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ABSTRACT

An approximate technique is presented for calculating the size distribution of an aerosol under Venus
conditions using the first three moments of the distribution. The effects of coagulation, sedimentation and
turbulent mixing are included. The approximate solution is compared to more accurate numerical solutions.
The method is sufficiently accurate and fast to be useful in large-scale dynamic calculations of the Venus
atmosphere. Using this method, we place upper limits on the dust number density in the Venus atmosphere

from a meteoritic source.

1. Introduction

The Venus clouds are 30-40 km deep (Marov et al.,
1973) and control both the shortwave and longwave
radiation fluxes. Since radiative heating is the drive
for motions, complete dynamical calculations must
include the effects of microphysical processes and
atmospheric motions of all scales on the distribution
of cloud aerosols and particle sizes in order to model
the radiation field properly. In this paper we present
an approximate technique for calculating the aerosol
size distribution under Venus conditions using the
first three moments of the distribution. The method
is reasonably accurate and both computationally and
conceptually simple.

The Venus clouds are composed of a strong solu-
tion of sulfuric acid (Young, 1975). Since the vapor
pressure over a sulfuric acid droplet is more sensitive
to changes in the concentration than to changes in
droplet size, the droplets are stabilized against vapor
exchanges. Thus, except for the initial formation of
the droplets, condensation has a negligible effect on
the size distribution. The only remaining process which
affects the droplet size distribution in the bulk of the
cloud far from the formation region is collisions be-
tween droplets (Rossow, 1977).

The fundamental equation determining an aerosol

1Work completed while senior author was at Cornell
University.

size distribution under the influence of collisions is

mimt) 1 m , , , ,
—_—— K(m', m—m'yn(m’ yn(m—m', {)dm
a¢ 2Jo

—n(m,t) / ) K (mmyn(m/ Hdm'+I(m,t), (1)

where 7 (m,t) is the number density of aerosol particles
per unit mass interval at time ¢, K (m,m’) is the col-
lision rate coefficient and 7 (m,f) represents any source
or sink of particles in a unit of volume, e.g., I(m,:)
can represent condensation.

Collisions between particles occur either because of
differences in sedimentation velocities or Brownian
motion. Near the 50 mb level on Venus the cloud
droplets are very small and nearly uniform in size;
the radius is 1.05+0.10 um (Hansen and Hovenier,
1974). The relative importance of coalescence and
coagulation can be evaluated by comparing the time
constants (Fuchs, 1964)

1 1 dN, 4kT
rene N1 dt 37
and
1 1 dN, =
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where N; and N, are the particle concentrations, % is
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Boltzmann’s constant, T the absolute atmospheric
temperature, n the atmospheric viscosity, ¢, and a,
the particle radii, V; and V; the sedimentation veloci-
ties and E;s the collision efficiency. For this very
narrow size distribution, a;=a;=1um and V-V,
<0.1V,, giving

2 gast
L—py—E12~FEns,
Tcoal 30 T

T coag

where p, is the droplet mass density. Since E.<K1
for these small droplets (Klett and Davis, 1973),
coalescence is not likely to be an important process
in the Venus clouds or for smaller sized aerosols.
Therefore, in what follows, we assume that coagula-
tion is the only microphysical process influencing the
aerosol size distribution on Venus. The cloud droplets
are formed by condensation, but condensation is un-
important in the bulk of the cloud.

Several approximate analytic. solutions to Eq (1)
with I(m,t)=0 have been found for simple forms of
K(m.m") (Drake and Wright, 1972; Friedlander and
Wang, 1966; Scott, 1968). Friedlander (1960a,b, 1961)
considers steady-state solutions for Brownian coagula-
tion with I(m,) representing sedimentation. The
steady-state solution balances the transfer of mass
into a particular size range against the loss of mass
by sedimentation. For the smaller particles, coagula-
tion predominates and dimensional analysis gives
n{m) « m—%%, while for the larger particles, sedimenta-
tion predominates and n(m)«m 2 (Friedlander,
1960b). Klett (1975) considers the whole class of
steady-state solutions for

K (x,y)=Kafy® (0<B<1),
I(x,8)= L[ (pF D)7+ xre @Ox[mol (p+-1)]7,

where p is a positive integer, « and y are dimensionless
masses, I, is the source strength at mean mass mo
and T is the gamma function.

Only numerical solutions seem possible for the more
general forms of Eq. (1), however. These numerical
solutions usually involve breaking the size distribu-
tion function' into a discrete set of functions repre-
senting the number of particles in size categories and
solving the resulting set of coupled, nonlinear equa-
tions (Berry and Reinhardt, 1974; Hidy, 1965 ; Mockros
et al., 1967; Warshaw, 1967). Since the stability and
convergence properties of these solutions usually result
in complex time-consuming calculations, these methods
of solution cannot be conveniently incorporated into
existing dynamic model calculations.

Detailed observations of an aerosol size distribution
require actually collecting samples, carefully cali-
brating the collection efficiences of the collectors, and
laboriously examining the particles under a microscope
in order to size and count them. The collection of
liquid aerosol particles presents even more problems.
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Other observational methods, including those used to
observe aerosols on other planets, depend on the
optical properties of the aerosols. By observing re-
flected, transmitted or emitted light at different wave-
lengths, phase angles and polarizations, a few proper-
ties of an aerosol distribution can usually be deduced,
but not the detailed distribution function #n(m,t) (see,
e.g., Hansen and Hovenier, 1974). Thus from an ob-
servational as well as computational standpoint, it
might be more convenient, in comparing data to
theoretical predictions, to recast Eq. (1) in terms of
integrated properties of the size distribution such as
the total number and mass concentrations and vari-
ance of the size distribution. '

The purpose of this paper is to derive a relatively
simple, approximate method of solving Eq. (1) for
conditions appropriate to the Venus clouds, where
I(mgt) includes the effects of turbulent mixing and
sedimentation. We present the method in Section 2
in the context of a simple, one-dimensional, vertical
structure model of the behavior of meteoritic dust in
the atmosphere of Venus. The source of particles is
then simply a flux of particles at the top of the model
atmosphere without the complications of condensation
growth. These particles can serve as condensation
nuclei for the clouds of Venus, and we shall refer to
these results in our second paper (Rossow, 1977).
Unlike the cloud droplets which evaporate at the
bottom of the cloud, the dust particles are removed
at the planetary surface at a rate which depends on
the conditions in the atmospheric boundary layer.
This particular case requires a specification of the
derivatives of the solution (flux) at the bottom
boundary rather than the magnitude of the solution.
We concentrate our discussion here on these least
accurate results produced by the approximations re-
quired for the bottom boundary conditions (Section 3).
In Section 4 we discuss the qualitative behavior of
the solutions to Eq. (1), and in Section 5 we present
the solutions of Eq. (1) using a discrete size distribu-
tion technique. In Section 6 we compare the results
of Section 5 with our approximate solutions and show
that the approximate solutions are reasonable accurate
and qualitatively correct. Finally, in Section 7 we
summarize our conclusions.

2. Equations

Multiplying Eq. (1) by m* and integrating over all
masses gives (Klett, 1975)

% / dm f am’[ (m+m'y —m>—m" 1K (mm’)
X g(mf)g(m 1)+ f ol (mt)dm,  (2)

where p is the atmospheric density, K(m,m’) the
Brownian coagulation coefficient and g¢(m,t) the
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number of aerosol particles per gram of atmosphere
per mass interval, i.e.,

pg(mt)=n(m,;p). 3)
The quantity X, is defined by

X, = / i m>q(m,t)dm. (€Y)]

Thus X, is the total number and X; the total mass
of aerosol particles per gram of atmosphere. The mean
mass and the variance of the size distribution are
given by

Xy
(my=—, ®)
Xo

=y X%
o= o = y 1. (6)

I(mf) is the rate of change of n(m,) due to sedi-
mentation and turbulent mixing and can be written as
(Haltiner and Martin, 1957)

dg(m,1)

Z

I __3 E %4
(m,n—g;[p o aq(m,n], 0

where the turbulent mixing is parameterized by an
eddy diffusivity £ and V, is the sedimentation
velocity.

In order to solve Eq. (2) for the first three moments
of the steady-state size distribution [(dX,/8t)=0],
the following assumptions are made:

8T
1) K(mm)=~Ky=

) ®)

39
where % is Boltzmann’s constant, T the absolute
atmospheric temperature and 7 the atmospheric
viscosity.
2) Vi(m)=cmi+c'm?

=gcl(m)i-(m)im+-c(m)t,  (9)
where c= (2p,8/97) (4m0,/3)%, ¢'= c(dmp,/3)BN, (m) is
defined by Eq. (5), pp is the mass density of the
aerosol particles (assumed to be 2 gm cm™) and g is

the acceleration due to gravity; A is the gas mean
free path and 8 the Cunningham factor.

3) / mBq(m)dm= fi(m)ixs, (10)

where f is a constant of order unity.
4) E/H2V, [in the lower atmosphere].

a. K(mm')=K,

This assumption neglects the two size-dependent
terms in the classical expression for the coagulation
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coefficient (Fuchs, 1964) which depend on the ratio
of m and #' to the one-third power. This is not a
serious error for particle size distributions ranging
over only a few orders of magnitude in mass. The
accuracy of this assumption is corroborated by the
results presented in Sections 5 and 6 as well as by
numerical solutions to Eq. (1) performed by Mockros
et al. (1967). This value of K (m,m’) assumes that the
sticking efficiency is unity which Fuchs (1964) de-
monstrates is correct for particles 21077 cm in radius.

This assumption also neglects the change in the
coagulation rate with atmospheric density. When the
gas mean free path is larger than the particle size,
the assumption that the gas drag is that of a fluid
no longer holds. Whilé the experimental verification
of the value of K (m,m’) between the region of validity
of the classical expression and the region of validity
of the gas kinetic expression (Fuchs, 1964) is un-
certain, theoretical results (Fuchs, 1964; Hidy and
Brock, 1965) have been derived for this transition
region. The numerical values are within a factor of 3
of the constant value assumed here. Since the coagula-
tion rate is small in the upper Venus atmosphere
where these effects are important, this assumption
produces little effect in the results.

b. Vi(m)=3c[{m)i+(m)~tm]

In the Stokes regime, the terminal velocity is pro-
portional to m! and therefore introduces in (2) an
integral of the form

/°° m*+iq(m)dm. (1)

In order to write (2) entirely in terms of integer
moments of the size distribution, this integral is ap-
proximated in terms of the mean mass and integer
powers of the mass. For particle mass distributions
with only a limited mass range, the first term in the
brackets in (9) probably represents an underestimate
for (11), while the second term represents an over-
estimate. Note that this form produces a coupled set
of equations in (13) and depends only weakly on the
mean mass.

As an example of the accuracy of this approxima-
tion, Fig. 1 shows the ratio of

3 [(m) X+ (m) 74X 1] (12)

and Eq. (11) for »=0, 1, 2 for power law fits to the
two branches of the size distributions of the form
g=gom~? with —5< $<S. The value p=0 corresponds
to a constant distribution, while p— corresponds
to a delta function for which the approximation is
exact. The peaks in the curves shown occur near the
values of p for which the integrals in (11) and (12)
are 2 minimum. The height of the peaks is a function
of the integration limits chosen since the minimum
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Fic. 1. Ratio of approximate to exact sedimentation terms for power law size
distributions. Curves 1, 2 and 3 are ratios for the first three moments and curve 4

is ratio for the closure approximation.

value of the integrals is just In(my/m,), where m, is
the upper integration limit and m, the lower limit.
For Fig. 1 the ratio of m, to m; is 10*. The peaks
are smaller if this ratio is smaller.

It can be seen that the approximation in Eq. (9)
is generally very good, except for size distribution
with 2<p <4, Aerosols on Earth are observed to fit
power law distributions with p=14% (Junge, 1963),
while general solutions to (1), called similarity solu-
tions and produced by rapid collisions, have p=1
(Liu and Whitby, 1968). Since distributions with p>2
are so sharp that most of the mass is contained near
one size, we can reduce the integration limits thereby
reducing the peaks in Fig, 1. Thus we expect (9) to
be accurate -for’ most naturally occurring unimodal
size distributions. Specifically, Hansen and Hovenier’s
(1974) results for the Venus cloud droplets are con-
sistent with p=1. The most inaccurate case that we
encounter is a case of strong turbulent mixing
throughout the whole depth of the atmosphere with
‘a strong coagulation which produces a broad bimodel
distribution.

In the gas kinetic regime, the terminal velocity is
such a weak function of particle mass that the simple
approximation in the second term of (9) is found to
be reasonably accurate.

c. /mslaq(m)dmzfl(m)4X2

The approximation in Eq. (9) always introduces
the next higher moment in each equation and therefore,
this assumption is necessary in order to close the
system of equations. The ratio

(m)¥x, / [ i mB3q (m)dm

is shown in Fig. 1, curve 4, and indicates that f; must
be greater than unity. We show in Section 6 that
factor of 2 error in f; produces less than a factor of 2
error in X, and hardly any error in X and X,.

d. E/HZV,

This assumption is required because the particular
method we use to solve Eq. (2), described in Section 6,
is stable only when this condition is met throughout
that part of the atmosphere where the gas mean free
path is smaller than the mean particle radius. When
this condition is not met, Eq. (2) reduces to a simple
first-order equation and a different method of solution
must be used. However, for meteoritic dust and cloud
droplets on Venus with particle radius <2 pm, this
condition is met by E2 10* cm? s~ We consxder only
cases with £2 10* cm? s~ in what follows.

With these approximations the set of equations to
be solved is

a d »
{‘"[PE;‘F%PC(W)LFPC'(W)}]—%PgK 0Xo }XO
2

2

+{—§;~ %pc<m>—ﬂ}x1=o

a3 1e] :
{—[pE-+%p6(m)*+pCf (m)*] }Xl <
03 0z

| oty

(13)

ar @ ‘
[ “[pE——+fw6(m)*+pC'(M)*]} Xo+p*KoX*=0
02 0z J
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3. Boundary conditions

For the purposes of this paper, the source of aerosol
particles is taken to be a given flux at the top of the
model atmosphere with the ultimate sink being removal
at the planetary surface.

a. Input flux

The input flux size distribution is assumed for dis-
cussion to be a delta-function; therefore the boundary
conditions at the top of the atmosphere are

0
IpEa—-!-%pc(m)?-i-pC'(m)%} Xo
Z
+ipc(m) X =Fy
0
{pE;—+%:pc(m>§+p6’<m>§} Xy ro (4
2

$pc(m)—Xy=Fmy

a
{ pE(—9-+f 1pc(m)§+pc’(m)§} Xa=Fo(mo)?
z 4

where Fy is the number flux of particles of mass .
A broader distribution can be simulated by adjusting
the values of flux terms in the last two equations.

Since the size distribution of interplanetary dust
seems to peak near a radius of ~0.1 um (Schneider
et al., 1973), we model the dust input as a flux of
uniform size grains with radius ¢=0.1 um. Estimates
of the number density of small dust grains near Venus
are between a factor of 10 smaller (Rhee, 1968) and
a factor of 2 larger (Dohnanyi, 1972) than the number
density near Farth. We assume that the dust flux
into the Venus atmosphere is comparable to that into
Earth’s atmosphere. Most previous estimates of this
flux, ranging from ~107 tons year~! (Opik, 1956) to
~107* particles cm~?s~! (Mason, 1971 ; Junge, 1963),are
based on observations of larger particulates (a=1 pm)
in Earth’s atmosphere and hence contain an unknown
contribution from the ablation products of larger
meteorites, More recent determinations of the mete-
oritic dust flux onto the moon give values as low as
~107% c® 57! (Schneider ef al., 1973) and suggest
that ablation products dominate the meteoritic dust
in Earth’s atmosphere. Therefore a flux ~1 ¢cm=2 s1
of 0.1 ym particles into the atmosphere of Venus is
certainly an upper limit.

b. Surface boundary condition

The flux of particles onto the planetary surface is

written as a velocity times the concentration, i.e.,
F,(surface)=pV’X,(surface), (15)

where F, is the sum of the turbulent flux and the
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sedimentation flux given by the expressions on the
left side of (14). F.(surface) is actually evaluated at
the top of the atmospheric boundary layer where air
motions are not influenced by the presence of the
surface. The value of V' is then the transport velocity
of particles through this layer to the surface. In gen-
eral ¥/ can be a function of particle size.

In the steady state, the flux of particles at all
points in the boundary layer is the same; therefore,
V’ is the deposition velocity at the planet’s surface
independent of the transport through the boundary
layer. Davies (1966) considers the detailed physics of
aerosol deposition in this layer and his results can be
reduced to two cases of interest: turbulent deposition
or gravitational sedimentation. For a very rough
surface and fully developed turbulence, Davies’ results
give a deposition rate comparable to the velocity in
the turbulent eddies near the surface. For this case,
the deposition velocity is of order U,, the friction
velocity. In the case of no wind or very small winds,
deposition occurs by gravitational sedimentation and
V' is then the terminal velocity of the particles. This
general qualitative behavior has been observed ex-
perimentally by Gillette et al. (1972), Gillette et al.
(1974) and Gillette and Goodwin (1974).

c. Approximate boundary condition in Stokes case

When V'’ is size-dependent, we must introduce ap-
proximations similar to those discussed in Section 2.
In this particular case, ¥’ is the Stokes sedimentation
velocity and the approximations (9) and (10) must be
used. Thus an assumption about the size distribution
at the surface is introduced by choosing a particular
value of f1 in Eq. (10).

However, for steady-state solutions, a procedure
was found to make the bottom boundary condition
less sensitive to the assumptions about the size dis-
tribution. The procedure, for the particular example
of a Stokes velocity, is as follows: since coagulation
conserves mass, there is no coagulation term in the
equation for X; in (13). Thus we may integrate this
equation using the top boundary condition (14).
Setting V¥’ equal to the Stokes velocity, we obtain

ZF()MQ

(m )8+ (m)y =iy = (16)
oC
The ratio of the terms on the left is
Xz
—{m)y l=¢2+1. an
Xy

Since the minimum value of ¢? is zero, there is a lower
bound on X,. From Eq. (16) there is an upper bound,
and these limits imply

F oo 2F oo
Lm)y <
pc pC

(18)
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This information can be used to rewrite (16) as two
boundary conditions in terms of the parameter v:

Fo?ﬂo
<m)—ix2=7 3 (19)
pc
Fgmo
()= 2—v)—, (20)
. pc
where v is given by
il o2 .

y=1+4 -(21)

2+2 (

Notice that 1<y <2. By specifying v, an assumption
.about the variance. of the size distribution at the
surface is introduced, but the results are not very
sensitive to the choice of v, as is illustrated in
Section 6.

Unfortunately, this procedure cannot be used in a
time-dependent calculation since Eq. (13) for X, cannot
be integrated. However, the Stokes boundary condi-
tion is almost certainly not the one of interest on
Venus, where the Stokes velocity is extremely small
at the surface. We have dealt with this case here for
completeness.

4. Qualitative behavior of solutions

a. Coagulation neglected

We first consider solutions for which the coagula-
tion terms are negligible compared to the mixing and
sedimentation terms; i.e., Tcoags>7s, TE, Where the time
constants are defined by

‘ Teong= [39°K oXe? I
r=H/V, ,
r5=H*E

(22)
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where H is the scale height of the atmosphere. When
coagulation can be neglected, the mean mass (m) is
constant with altitude.

We now consider the cases where each of the two
remaining terms predominate.

(i) r<LrE

Neglecting the coagulation and turbulent mixing
terms and mtegratmg Eq. (13) once using the boundary
condition (14) gives

¢ 1 N
= 2Fo|:2+-—m(f’b] :
c
2Fo‘moil Xz ' —1
X1=|: :I[H———m ] rs (23)
pe Mo [
Fomo! ol 1
Xy= [ f 1+~'m0~i] ,J
pc ¢

remembering the definition of (m) from Eq. (5). When
the gas mean free path is smaller than the particle
radius (i.e., (¢’/c)mi3<1), all the X,’s are proportional
to p'. When the gas mean free path is much larger
than the particle size, the sedimentation velocity
becomes proportional to p since ¢’ «p so that the X,’s
are constant with altitude. This behavior is illustrated
in Fig. 2, where the Cunningham correction to the
sedimentation velocity has been included. The level
at which the mean free pa.th is equal to the particle
size is marked.

(i) rpKr,

Integratiﬁg (13) once and using the boundary con-
dition (14) gives

ax,
pE—="F(mo)". (24)

9z

Assuming for simplicity that E is constant and
p=ppexp(—z/H), this equation has a solution

MH(l 1 )’

X,,=Xy(0) (25)

P po

where X,(0), the value of X, at the surface, is given
by the bottom boundary condition. There are two
cases. If ¥’ in (15) satisfies V>>E/H, then X, is
proportional to (p7!—ps™!) as shown by curve ¢ in
Fig. 3. 1f V'KE/H, then X,(0>>Fy(mo)*H/E, and X,
is constant up to some height where the p~! behavior
begins to dominate. ThlS behavior is illustrated by
curves a and b in Fig.' 3, where the Cunningham
correction to the terminal velocity has been neglected
in order to show the transition more clearly. The tick
marks indicate that level at 'which X,(0)=FoH/pE.
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b. Source term neglected

We next consider solutions to Eq. (2) for which
sedimentation and mixing are neglected. These solu-
tions are not steady-state solutions, but Friedlander
and Wang (1966) have shown that, after a long time
compared tO 7coqg the nondimensional shape function
defined by

ﬂ(m,t)X1
v ﬂ)E ) )
Xo? Xy

mXy

becomes independent of time. Thus, while the mean
mass increases in time, the variance of the size dis-
tribution is equal to 1 and constant. Coagulation
thereby acts to broaden size distributions with ¢?<1
and to narrow size distributions with ¢2> 1.
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¢. Full solution

Finally we consider solutions of Eq. (13) which
are a balance between the transport rates and the
coagulation rates. Since coagulation reduces the par-
ticle number density, thereby increasing 7coaq, steady-
state solutions require 7o TE OF 7. In the case
7:&7g, the balance between coagulation and sedi-
mentation produces a size distribution in which the
mass transfer through the size distribution is limited
by the removal of larger particles by sedimentation.
This is the result found by Friedlander (1960a,b,
1961). In the case 7g<<7,;, the balance between co-
agulation and turbulent mixing produces a size dis-
tribution at each level which can be considered a
mixture of size distributions of differing mean masses
and variances. Fig. 4 illustrates this behavior. Again
the Cunningham correction to the terminal velocity
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"
103
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F16. 4. Comparison of solutions with (b) and without (a) the effects
of coagulation included.
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(b) E=10t cm? 57, Fo=10"2 cm™2 s71; (¢) E=10% cm? s}, Fo=1 cm™2 s71; (d) E=10° cm? s, Fo=10"2 cm™2 s
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F16. 6. Comparison of exact and approximate solutions for xo, x1 and x: for varying values of
v with fi=1: values of £ and F, as in Fig. 5.
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has been neglected in order to enhance coagulation
in the upper atmosphere.

5. Exact calculations

In order to determine the accuracy of the approxi-
mate solution outlined in Sections 2 and 3, solutions
of (13) are compared to a numerical solution of Eq. (1)
using a discrete size distribution similar to that of
Berry and Reinhardt (1974). The partial derivatives
in Eq. (1) are approximated by simple, first-order
differences and the nonlinear terms are linearized by
writing the coefficient as a function of a trial solution.
The integral is converted to a sum since the spectrum
is assumed to be discrete. The solution to the resulting
set of equations is found by inverting the matrix of
coefficients, which in this case is tridiagonal. The
solution is then used to improve the coefficients and
a new solution obtained. This procedure is repeated
until the solution stops changing.

The Venus. atrrllosphere thermal structure is that
of Marov (1972). The input flux of particles at the
top (98 km level) is placed in the smallest two size
categories in a % and % proportion between the smallest
and second smallest size. This is necessary in discrete
size distribution calculations in order to produce a

smooth particle size distribution (Hidy, 1965). Thus .

the initial size distribution is broader than a' delta
function. The coagulation coefficient is the size de-
pendent form given by Fuchs (1964) without any cor-
rection for the density effects discussed in Section 2a.

For the sake of economy, the size distribution is
truncated after 20 categories. The effect produced by
this truncation is small if the truncation occurs on
the rapidly decreasing tail of the distribution, since
the number of particles being neglected is very small
(Klett, 1975). This effect was checked by performing
some calculations using more size categories and is
negligibly small.

Fig. 5 shows the resulting size distributions and the
solid lines in Fig. 6 show the results of these calcula-
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tions in terms of X, X; and X, for the following cases:
for E=10* cm? s, (a) Fo=1cm 2 s ! and (b) Fo=10"2
cm™? 57t and for E=10% ecm? s, (c) Fo=1 cm—2 s
and (d) Fo=10"%2 cm™2 s, All cases have V'=V,.
All of these cases exhibit the transition from constant
X, to X, « p~! behavior expected for mixing dominated
solutions with sedimentation removal at the surface;
however, the.effect of coagulation in the lower atmo-
sphere is more pronounced in the weak mixing, high
flux case, producing a larger mean mass at the surface.
Coagulation is less important in the other cases either
as a result of a reduction in the concentration (low
flux cases) or as a result of increased transport rate
(strong mixing case). The Cunningham correction has
been neglected here to enhance coagulation in the
upper atmosphere.

Comparison of the particle size distribution for the
solutions, displayed in Fig. 5, illustrates the effect of
strong mixing on the results. [This figure shows the
actual number density at the top and bottom of the
atmosphere in each size category rather than the
distribution function #(m,t).] The strong mixing size
distributions are clearly a mixture of the narrow input
distribution from high altitudes with the broad coagu-
lation dominated distribution from near the surface.
We note in Table 1 that these size distributions have
large values of o2.

6. Comparison of solutions

Fig. 6 compares the solutions of Eq. (13) with
fi=1, with the Stokes lower boundary condition
[Egs. (19) and (20)] and with varying values for v
to the results presented in Section 5. Eq. (13) was
solved by approximating the derivatives by simple,
first-order differences. The nonlinear terms are line-
arized by using trial solutions to calculate the coeffi-
cients. The resulting tridiagonal matrix of coefficients
is then inverted to obtain a solution, the coefficients
are improved, and the process is repeated until the
answer stops changing. i '

TaBLE 1. A comparison of the total number of particles per gram of atmosphere xo the mean mass (m), and the variance ¢? of the
size distributions at different altitudes in the atmosphere of Venus for different values of the top particle flux Fo and the eddy diffusivity

parameter E for the “exact” and approximate solutions.

Approximate

Exact
Fy E Location X0 {m) X0 {m)
(cm™s7™) (ecm?s™)  (km) (G (® K (8™ & o
1.0 10¢ 90 2.03%X107 1.37X10~14 0.47 2.60X107 1.42X10 0.51
2 3.17X10% 2.76X10713 2.00 3.43X102 2.80X 1071 191
102 10¢ 90 3.64X 108 9.62X 1018 0.04 3.92X1035 9.63X10715 0.0
2 1.16X102 3.50X 10+ 2.12 1.17X102 3.36X101 1.97
1.0 108 90 3.80X10% . 9.77X 10718 2.06 4.06X 105 9.98 X 1015 1.44
2 1.34X108 7.81X10™ 8.67 1.48X 103 1.16X 101 2.02
- 102 : 108 90 3.96X103 1.02X 101 0.89 4.19X10° 1.02X 101 0.72.
2 1.36X105 3.04 X101 2.48 1.41X10? 3.00X 101 2.00
C10? 10¢ 90 1.70X 108 1.31 X101 0.24 4.38X10¢ 1.37X 101 0.34
2 231X 102 2.25X10™1 1.65 3.12X102 296101 1.88
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FiG. 7. Variation of X. in approximate solution with differing values of fi. For curve 1 the
assumed flux is 1 cm™% s and for curve 2, 1072 cm™2s7L,

It can be seen in Fig. 6 that the best a priori guess
for v of 1.5 (halfway between the limiting values)
gives good agreement at the surface for all cases.
The worst case is for the very broad, bimodal dis-
tribution produced by a combination of rapid mixing
(E=10° cm? s™*) and rapid coagulation (Fo=1 c¢cm™
s™). Since v is so insensitive to the actual width of
the distribution, y=1.5 should always give results at
the surface within 509.

The agreement between values of X, from the
“exact” calculations and from these approximate cal-
culations at higher altitudes can be improved by
increasing the value of fi. This behavior is shown in
Fig. 7. The importance of the assumed values of fy is
great only when the mixing is weak, as expected, and
a value of fi=4 gives reasonably good results for all
the cases considered here. Comparing the results in
Figs. 6a, 6b and 7 and in Table 1, we conclude that
a factor of 2 uncertainty in f; results in less than a
factor of 2 uncertainty in X, and that the effect on X,
and X; is very much smaller.

The most important fact demonstrated by the com-
parisons in Fig. 6 is that, despite some disagreement
in magnitude, these approximate solutions exhibit the
proper qualitative behavior discussed in Section 4.
Table 1 compares the values of X, (the total number
of particles per gram of atmosphere), (m) (the mean
mass), and ¢® (the variance of the size distribution)
for the “exact” and approximate calculations. We see
that the values of X, and (m) are in excellent agree-
ment for all cases. Only o? for cases producing broad,
bimodal size distributions is in substantial disagree-
ment. This is to be expected since the first three

moments cannot adequately describe a bimodal or
more complex distribution.

All of the cases shown here represent cases for
which mixing is completely dominant or at least as
important as sedimentation in the lower atmosphere.
For very weak mixing cases, sedimentation dominates
the particle transport even in the lower atmosphere
and the solution becomes first order and very sen-
sitive to the choice of f;. Qur approximation and
method of solution are not valid for this case. How-
ever, for Venus conditions, sedimentation probably
does not dominate the transport of particles smaller
than about 10 um in the lower atmosphere and our
method can be applied. The  last entry in Table 1
shows a case where sedimentation dominates the
transport in the upper atmosphere while (weak)
mixing dominates in the lower atmosphere. The
major cause of difference here is a slight overestima-
tion of the coagulation rate of the smaller particles
in the distribution at higher altitudes in the exact
calculation.

7. Conclusions

From the results presented in Sections 5 and 6,
we conclude that the approximate form (13) of Eq. (1)
gives reasonably good values of the first three mo-
ments of the aerosol size distribution under Venus
conditions. The parameterization of the size depend-
ence of the sedimentation velocity [Eq. (9)] gives
results within 509 of the ‘“‘exact” values for Venus
conditions. As Table 1 illustrates, this method is
especially accurate for those cases resulting in unimodal
size distributions, but still gives good values of the
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first two moments even for cases resulting in bimodal
size distributions. Some improvement in the values
of the third moment might be obtained for more com-
plicated size distributions by extending the system
of equations to higher moments. However, since only
the first three moments of the Venus cloud size dis-
tribution are known from observation, higher accuracy
is not warranted.

Solutions for the Stokes bottom boundary condition
have been emphasized in this presentation because
they .represent the least accurate solutions as a result
of the approximate boundary condition introduced
in Section 3. When ¥V’ is independent of particle size,
as for turbulent impact deposition or where the mag-
nitude of the solution is specified at the bottom
boundary as for a condensate cloud, the technique is
more accurate. . .

The great advantage of this method is its com-
putational economy. While more accurate numerical
schemes using explicit size categories require solving
a large number (>20) of coupled, nonlinear equations,
this method requires solving only a few such equa-
tions. In this case, three equations were solved,
resulting in a reduction in running time from several
minutes to several seconds on an IBM 370/168.

Comparing the first and last entries in Table 1, we
see that the number mixing ratio of meteoritic dust
in the lower atmosphere of Venus is limited by co-
agulation. The results in Table 1 can be taken as
upper limits on the meteoritic dust density in the
lower atmosphere.
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