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ABSTRACT

To examine a postulate that the horizontal momentum exchanges in Venus’ stratosphere are quasi-
nondivergent, we investigate the properties of two-dimensional turbulence on a slowly rotating sphere
in a high-resolution, one-level numerical model. We conclude that the forcing which maintains the
stratospheric flow is weak and influences the dynamics far less than the inertial effects. Consequently,
the behavior resembles that of vorticity-conserving, two-dimensional flows. On a slowly rotating planet
like Venus, such flows are dominated by solid-body rotation and by a planetary wave of unit zonal
wavenumber—this wave corresponds to the observed Y-shaped UV feature. Although these largest scales
of motion stand out, the dyna.mlc balances of the flow are fundamentally nonlinear, in contrast to the
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quasi-linear Rossby wave regime on rapidly rotating planets.

1. Introduction

We are concerned with explaining the horizontal
distribution of angular momentum in the Venus
stratosphere. Two properties of slowly rotating atmo-
spheres suggest that the momentum exchanges are
quasi-nondivergent and consequently two-dimensional :
1) in the absence of a geostrophic constraint on the
dynamics, the hydrostatic balance and a highly stable
stratification force motions to follow constant density
surfaces; 2) when differential heating drives the atmo-
sphere, the circulation tends to be of a quasi-barotropic
Hadley form, in which the constant density surfaces
lie almost horizontally. To understand the conse-
quences of such constraints for Venus, we investigate
the properties of two-dimensional turbulence on a
slowly rotating sphere. The study complements pre-
vious analyses of two-dimensional turbulence in
different stationary and rotating domains (Lilly,
1972a,b; Rhines, 1975, 1977; Williams, 1975, 1978)
and provides a useful prelude to a more complete
simulation—an act hlndered by the current inadequacy
of data.

Observations of the upper atmosphere of Venus have
revealed an unexpected distribution of angular mo-
mentum, in which planetary-scale waves are super-

! Presented under a different title at the meeting of the Division
of Planetary Sciences of the American Astronomical Society,
Boston, 1977. Reported in Bull. Amer. Astron. Soc., 9, No. 4.

% Presently at Goddard Institute for Space Studies, New York,
NY 10023.

imposed on a predominantly zonal flow of nearly
uniform angular velocity ; this relative angular rotation
exceeds the planetary rotation by two orders of magni-
tude. On other scales, power spectra analyses of the
sizes of cloud features, when interpreted as kinetic
energy spectra, produce characteristics symptomatic
of two-dimensional turbulence (Travis, 1978). These
results emerge from a variety of observations and
techniques: ground-based UV photographs (Dollfus,
1975), spectroscopic Doppler measurements (Traub
and Carleton, 1975, 1978), Venera series entry probes
(Marov et al., 1973; Kerzhanovich and Marov, 1977)
and detailed tracking of small-scale features in the
Mariner 10 UV photographs (Suomi, 1974 ; Belton ef al.
1976a; Limaye and Suomi, 1977). Unfortunately, our
knowledge of the angular momentum distribution is
incomplete because of observational limitations, e.g.,
the Mariner 10 photographs are confined to low lati-
tudes (mostly in the Southern Hemisphere on the sunlit
side), and the longitudinal flow structure can only be
inferred from the data by assuming the time dependence
of the flow (cf. Belton e/ al., 1976a; Limaye and
Suomi, 1977). Such ambivalence precludes detailed
comparison with model results.

Previous attempts to understand what processes
maintain this remarkable angular momentum distri-
bution have concentrated on simple models of the
vertical transport of the planet’s angular momentum
into the upper atmosphere. The model of Fels and
Lindzen (1974) (also, Fels, 1977) involves vertical
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transport by vertically propagating internal gravity
waves excited by the zonal variation of solar heating,
while the model of Gierasch (1975) involves vertical
transport by an axisymmetric Hadley circulation driven
by the meridional variation of solar heating. The latter
of these two models also requires some process of
horizontal momentum transport which Gierasch repre-
sents by an extremely large horizontal eddy viscosity;
however, Kélnay de Rivas (1975) has shown that if the
Prandtl number of the eddies is unity, such a strong
mixing also eliminates the temperature gradient that
drives the Hadley circulation. What is needed is some
dynamical process which transports momentum, but
not heat, horizontally. The similarity between the
horizontal distribution of angular momentum obtained
by Rossby (1947) and that observed in Venus’ strato-

sphere led Gierasch (1975) to suggest Rossby’s “vor--

ticity mixing” as an alternative to the momentum
mixing.

In his attempt to understand the horizontal angular
momentum distribution in Earth’s atmosphere, Rossby
(1947) introduced the concept of vorticity mixing in a
one-level model atmosphere. Rossby’s model was not
successful because it conserved absolute vorticity and,
therefore, it did not account for the baroclinic and
surface processes which create and destroy vorticity.
However, subsequent research has shown that Rossby’s
model equation, the vorticity equation, with the
addition of forcing terms to represent the most im-
portant baroclinic and surface processes, simulates
rather well the dynamics of Earth’s atmosphere and
ocean, as well as Jupiter's upper atmosphere [see
Williams (1978) for a fuller discussion]. Such one-level
models apply to rapidly rotating atmospheres because,
in the latter, the geostrophic constraint' produces
quasi-nondivergent flow along quasi-horizontal isobars
so that the real and model systems have analogous
two-dimensional motions—even though their density
structures differ. However, the slow rotation of Venus
imposes no geostrophic constraint on the dynamics so
the analogy between geostrophic and two-dimensional
motions does not apply ; for nondivergent flow to exist,
the stratosphere has to be essentially barotropic. A
further consequence of this near barotropy is that the
two-dimensional motions do not transport heat
efficiently.

Scale analysis of the equations for thermally forced
motions under Venus conditions (Section 2) supports
the idea that the stratospheric motions are nearly
divergence-free and two-dimensional. A similar result
holds for the large-scale circulation in Earth’s tropics
(Charney, 1963; Holton, 1972) although planetary-
scale, vertically propagating gravity waves can trans-
port significant momentum and energy (Holton, 1969).
Fels and Lindzen’s model of the 4-day wind involves
such wave action. We represent the effects of gravity
waves or of weak thermal circulations by a simple
forcing of a two-dimensional model. The flows resulting
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from weak forcing closely resemble those observed,
with the almost-uniform angular momentum distri-
bution and the Y-shaped UV feature being natural
consequences of two-dimensional dynamical processes.

The numerical procedure used to solve the model
equations is presented in Section 3. This is followed
by a discussion of the nature of vorticity conserving
dynamics (Section 4) and by examples of the flow
patterns produced when vorticity sources and sinks
are present (Section 5). Finally, we discuss the implica-
tions of our results (Section 6).

2. Scale analysis of the vorticity equation

The general Navier-Stokes equations of fluid motion
in a rotating reference frame reduce to the familiar
vorticity, divergence and hydrostatic equations when
the so-called traditional approximations are made
(Lorenz, 1967). In particular, the prognostic equation
for the vertical velocity is replaced by the hydrostatic
relation, with the vertical velocity determined diag-
nostically from the continuity equation. The horizontal
momentum equations are equivalent to the vorticity
and divergence equations. The vorticity equation in
spherical, log-pressure coordinates is

¢t U Vot /) Fwf-
=— (44 Vaw- (kX U). 42V, (1)

with the following notation :*

(\,0) longitude, latitude

(u,v) corresponding velocity components of U, the
horizontal wind velocity '

z vertical coordinate [ =In(p,/p)], k=unit verti-
cal coordinate vector

p, ps pressure, surface pressure

w vertical velocity [ =Dz/Dt]

¢ vertical component of relative vorticity
{= (1/a cos8)[vx— (u cos8)e]}

f vertical component of planetary vorticity
[=2Qsind]

) horizontal divergence
{= (1/a cosb)[ur+ (v cosf)s )= —e*(¢~*w).}

v viscosity parameter

] del operator on constant z surfaces

Vs three-dimensional del operator.

The first two terms on the right in Eq. (1) represent,
respectively, the creation/destruction of vorticity
through the contraction/expansion of vortex tubes by
the divergence of the horizontal flow and the twisting/
stretching of vortex tubes by the shears in the flow.
The third term represents vorticity diffusion by un-
resolved scales of motion. One important consequence
of this equation is that for all rotating differentially
heated atmospheres, fé is nonzero, and so these atmo-
spheres are always vorticity full.

3 Subscripts ¢, z, A and 8 indicate differentiation with respect to
these coordinates.
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For Venus, the insignificance of the rotational terms
in (1) give its stratosphere a unique dynamics. We
scale the equation according to the following scheme:

(@ cosBon,adl) =a(cosBaN,d0), 1= (a/U)t*
(u,0) = U (u*v*), z=Hh ®
¢=(U/a)™, w=Wa*
8= (W/H)s*

where H~1 is the depth of the cloud-filled stratosphere
in scale heights. Substituting (2) into (1), multiplying
by (a/U)?% and dropping the asterisks, yields

U Vof = — (Wa/U)[wi 56— Vaw- (kXU)4]
+/Ua)Vi. (3)

In the Venus stratosphere, the near balance between
adiabatic cooling and radiative heating (Gierasch,
1975) suggests that W=10"7 s~! so that We/U«K1.
(This inequality may not be so strong if motions driven
by diurnal temperature contrasts are important.)
The vorticity source/sink contributions of thermally
forced motions in the stratosphere are, therefore, not
of leading order. The balancing of these source terms
by dissipation implies that the diffusion term is also
secondary, and mixing length theory supports this
conclusion. Therefore, to leading order, the dynamics
of Venus’ stratosphere is consistent with the conserva-
tion of relative vorticity, namely,

§'1+U‘V2§'=0, (4)

i.e., the forcing which maintains the dynamics of the
stratosphere is weak in magnilude and only weakly
coupled to the flow.

The above estimate of W is only valid for the
thermally forced motions. We have no way of esti-
mating the value associated with any mechanically or
thermally excited inertial oscillations that could
produce a strong forcing and a strong coupling between
different levels of the atmosphere (cf. Fels, 1977). In
this investigation, we have chosen to study the response
of the stratosphere modelled as a two-dimensional
fluid layer that obeys (4) (in the absence of forcing
and dissipation) or (3) with the first term on the right
represented as a simple forcing function, dependent on
time and location only.

3. The numerical model
a. Equations
We consider a two-dimensional fluid and introduce

the standard velocity streamfunction ¢. Eq. (3)
becomes

GtV () y— Vb o= vVeX+F—D, (5)
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with the following notation:

(x,y) prograde longitudinal and poleward latitudinal
coordinates [ = (a\,a sinf)]

m mapping factor [ =sect]
(u,v) (_ m"\lxy,mnlz 1)
/ 2Qy/a

e my— (u/m) y=mry .+ (m,),= Vi

V,2  Laplacian operator

F forcing term

D drag term [ = ({ sin'0)/7p]
D time scale of drag.

Eq. (5) is solved on a (128X 128) grid-point array
using the Arakawa (1966) finite-difference scheme '
which has the energy and enstrophy conserving proper-
ties essential for accurate and stable simulation of
turbulent flows [see Williams (1978) for more details
of the numerical scheme]. The time stepping is per-
formed by a standard leapfrog method.

b. Dissipation

There are two types of dissipation in these calcu-
lations. The drag D is formulated as an Ekman-like
surface drag, but only represents a convenient way to
limit the amplitude of the vorticity and control the
integration time required for equilibration of the flow.
This formulation of the drag caused by the surface
and lower atmosphere is not realistic; but since this
term is not scale selective and only weakly dependent
on latitude, it does not significantly alter the qualitative
pattern of the solutions obtained.

A simple Laplacian diffusion represents the small-
scale horizontal mixing process. (The more complicated
operator needed to conserve angular momentum in
solid-body rotation is not necessary when the diffusion
time scale is much longer than the integration time,
as is the case here.) The coefficient » has the smallest
value consistent with proper spectral representation
and minimal dissipation (see Williams, 1978).

¢. Boundary conditions

The integrations are made on global sectors with
periodic boundaries at longitudes A=0, \o and im-
permeable boundaries ¥,=y'=0 at latitudes 6= =+6q.
Usually, Ao=360° and ;= 70°. ¢’ is the variation of ¢
from its zonal mean value .

The boundary conditions on the impermeable walls
maintain a condition of “wall neutrality” (boundary
conditions BC2 in Williams, 1978) and conserve the
vorticity and angular momentum of the flow within the
accuracy of the sidewall truncation errors.

d. Formulation of F

We consider three types of forcing functions : axisym-
metric, localized and - pseudo-baroclinic. The axi-
symmetric forcing functions were chosen to produce



380

zonal flows with various meridional structures, usually
symmetric about the equator; these functions -mimic
the behavior of such mechanisms as a Hadley circulation
in supplying momentum to the stratosphere (e.g.,
Gierasch’s model). The localized forcing functions
produce vorticity in a latitudinally and longitudinally
limited area centered-about the equator that moves
with the sun’s surface velocity and mimics a thermally
excited momentum source (e.g., Fels’ model) ; however,
this motion does not appear to play an important role
in the equilibrated flow. The pseudo-baroclinic forcing
represents the effect of baroclinic eddies by introducing
kinetic energy into barotropic eddies of a specific
wavelength and random phase (see Williams, 1978
for details)—in contrast to the other forcing functions
which inject momentum and kinetic energy into jets.
Some of the 26 different cases studied appear below.

4. Vorticity conservation and two-dimensional
turbulence .

We gain a better understanding of the dynamics
of two-dimensional flows with vorticity sources and
sinks (Section 5) by first studying motions with
conserved absolute vorticity

rt+¢z<§+f)11_\by§z=0' (6)

A very large number of studies of Earth’s atmo-
spheric and oceanic dynamics take (6) as an approxi-
mation of the full equations of motion or use it to
isolate the so-called barotropic processes. We briefly
discuss some of these studies to illustrate the context
of our numerical solutions of (6).

Rossby’s (1947) solution for a steady-state atmo-
sphere is not a solution of the homogeneous equation
(6), since he assumes a constant equatorward flux
of vorticity below some latitude. However, in his pre-
liminary discussion, he states ‘‘that for a prescribed
momentum, a minimum of kinetic energy is reached
when the entire (atmosphere) rotates as a solid”’—in
the absence of vorticity sources and sinks—and that
this atmosphere “cannot by itself give rise to lateral
mixing processes, since no energy is available for that
purpose.”* This suggests 1) that solid rotation is the
only ‘“stable” state of a two-dimensional vorticity-
conserving flow in the sense that this state cannot
evolve further under these constraints; 2) that an
atmosphere initially having some other angular veloc1ty
distribution would ‘“relax” to solid rotation in the
absence of any vorticity sources or sinks. However,
since other angular velocity distributions contain more
kinetic energy than does the solid rotation state, their
“relaxed’” or “stable” state must contain waves.

To define the waves on Venus, it is useful to consider
Thompson’s (1948) extension of the classical Rossby-

4 This minimum energy statement can easily be proved using
the method of -Lagrange multipliers (P. J. Gierasch, private
communication). ’
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Haurwitz wave theory (Rossby, 1939; Haurwitz, 1940).
This shows that for latitudinally varying mean flows, a
special class of waves of permanent shape can exist, with
a dispersive phase speed given by

- fﬂ/—'\zuw
B2bm? ?

()

where £ and m are the zonal and meridional wavenum-
bers, ¥, the basic zonal velocity and the coordinates Car-
tesian. When the planetary rotation is negligible, as
on Venus, dispersive wave solutions to (6) can still
occur because, as (7) indicates, the meridional gradient
in the vorticity of the mean flow acts like the planetary
vorticity gradient. Such waves are linearized advection
waves, i.e., waves that advect relative vorticity rather
than planetary vorticity, in contrast to the Rossby
waves. In the special case where the mean zonal flow
resembles solid rotation, (7) can be reduced by a
coordinate transformation to the Rossby wave solution;
but in general this analogy does not exist.

The numerous linear stability analyses of different
forms of mean zonal flow or waves suggest which
solutions of (6) form the stable or relaxed state. For
two-dimensional flows, the instability has been called
the barotropic or shear instability. One class of such
stability problems concerns the transfer of energy from
a mean zonal flow into small, growing, wavelike
disturbances. The mean zonal flow on a sphere must
meet two conditions for instability (Fjortoft, 1950;
Kuo, 1951): 1) conservation of kinetic energy requires
that the integral over the sphere of the product of
velocity and vorticity gradient be positive, and 2)
conservation of angular momentum requires that the
absolute vorticity change sign somewhere on the
sphere. The first condition requires that the disturbance
acquire its kinetic energy from the mean flow by
redistributing the angular momentum of the mean flow.
This leads naturally to Rossby’s statement that the
solid rotation state must be stable against shear
instability. However, because of the amplitude depen-
dence in the second condition, small deviations from
large-amplitude solid rotation can also be stable. This
is the well-known “g-effect’” on a rapidly rotating planet
which allows strong jetlike structure in the zonal flow
relative to the surface because it i1s superimposed on a
much larger rotational zonal flow. When viewed from
an inertial reference frame, the deviation from solid
rotation caused by these “jets” is normally small.
However, on Venus, with its small rotation rate, any
strong jetlike structures in the zonal flow relative to the
surface must be barotropically unstable and, conse-
quently, maintained by some process.

The other class of stability problems concerns the
transfer of energy from a Rossby-Haurwitz wave
into small, growing disturbances which can include
zonal flows or other Rossby-Haurwitz waves. Such
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Rossby-Haurwitz wave interactions at small amplitudes
are resonant interactions of second order; i.e., they
must involve three wave components which satisfy
the resonance condition (Hoskins, 1973, Baines, 1976).
The conditions for the barotropic instability of Rossby~
Hawrwitz waves parallel those for zonal flows (Baines,
1976): (i) an energy condition defines a set of waves,
those with wavenumbers less than three, which are stable
regardless of amplitude, and (it) an amplitude condition
produces a ‘B-effect” on rapidly rolating planels that
stabilizes waves with intermediate wavenumbers, while
all smaller scales are wunmsiable. Although we must
consider the more general advection waves on Venus,
these results suggest that only the largest waves are
barotropically stable.

Turbulence studies, in contrast to the stability
analyses, consider the evolution of a complete spectrum
of motion, containing all zonal and wave components
without focusing on particular interactions. The con-
clusions from studies of two-dimensional turbulence
are qualitatively similar to and support those of the
stability analyses. The integral constraints on (6),
namely, conservation of kinetic energy, angular mo-
mentum, and enstrophy, together with the plausible
requirement that the nonlinear interactions broaden
an initially sharp kinetic energy spectrum, require that
the majority of the kinetic energy be transferred to
the larger scales, while the majority of the enstrophy
is transferred to the smaller scales (Fjortoft, 1933;
Merilees and Warn, 1975; Baines, 1976). For a particu-
lar wave component or scale of motion, the nonlinear
interaction is second order and must involve one larger
and one smaller wavelength component. Consequently,
on a finite domain, such as a sphere, where the wave
spectrum is discrete, the very largest scale waves must
be stable since they cannot give up energy to smaller
scale waves by these second-order interactions. Smaller
scale waves are “‘unstable” in-that they give up most
of their energy to larger scale waves. The “relaxed”
state that results is still turbulent, containing all the
scales of motion, but the lowest wavenumber zonal
flow and advection wave now completely dominate
the motion.®

All of these suggestions come together in recent
numerical simulations of two-dimensional, vorticity
conserving motions. The more complicated case of
rapidly rotating fluids has been considered as a model
of the dynamics of Earth’s oceans by Rhines (1975,
1977) and of Earth’s and Jupiter’s atmospheres by
Williams (1975, 1978). Briefly, they find that the
character of the wave and zonal flow interactions

5 Baines (1976) finds two stable zonal flows and two stable
planetary waves; however, those modes which give velocity
fields with odd symmetry about the equator only predominate
in the “relaxed” state of a flow with no net angular momentum.
Since we consider only flows with net angular momentum, here,
the even symmetry zonal flow and planetary wave modes
predominate.
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F1G. 1. Contours of the flow streamfunction ¢ in x, y coordinates
(see text) and the meridional profile of the mean zonal flow
velocity #. Negative y is indicated by shading and the contour
interval is Ay. The scale of # is »*. The accumulated integration
time, in days, is ¢. (a) Case Al, Ay =40 km? 57}, #*=0.1 km s7,
t=2.3 days; (b) case A2, Ay =40 km? 571 4*=0.1 km 57, /=13.8
days; (c) case Al as (a), t=13.8 days.

changes when the scale of the motions becomes large
enough that the Coriolis gradient 8 becomes effective.
At smaller scales, the full nonlinear interactions allow
energy-enstrophy exchanges among all components
with the consequent rapid cascade of kinetic energy
to larger scales and enstrophy to smaller scales where
even extremely weak viscous effects can dissipate it.
However, at the larger scales, on entering the Rossby
wave regime, the more restrictive constraints of
resonant interactions strongly inhibit the energy
cascade. Energy advection is replaced by energy
radiation by the propagating Rossby—-Haurwitz waves
(Rhines, 1977). The “relaxed” state of a fully turbulent,
two dimensional flow on a rapidly rotating planet
contains a complex of propagating “stable” Rossby—
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TaBLE 1. Parameter values for numerical models discussed.
Cases labeled A have no forcing and represent the free inertial
development of some initial flow state. Cases labeled B have a
homogeneous pseudobaroclinic forcing. Cases labeled C have a
forcing function localized in both longitude and latitude. Cases
labeled D have axisymmetric forcing. The dissipation time scale
r,=0a%/v, where a is the planetary radius (=6000 km). Venus’
rotation rate=—0.3X107¢ 571,

) Integration
Figure time :
Model no. (days) rp(day) 7,(days)
Als 1 19.5 o 1830
A2sb 1 16.7 © 1830
B1 2 78.2 20.0 3660
C1 3 46.0 5.0 3660
C2 4 54.6 5.0 1220
C3 7 51.7 20.0 3660
Di= 5 23.0 5.0 3660
D2se 6 24.1 5.0 1830
ano=180°. .

b The planetary rotation rate is that of Earth, with sign reversal.
€ fo= 60°.

Haurwitz waves and a mean zonal flow with.jetlike
structure (Williams, 1978).

The free inertial development of two-dimensional

turbulence for a non-rotating fluid has been simulated
by Lilly (1972a,b). We have investigated several
examples of this evolution for fluid on a slowly rotating
(Venus-like) sphere. The first example (Fig. 1) illus-
trates the barotropic instability of axisymmetric jets
and the role of the B effect. In these calculations, a
forcing function F is introduced in (5) with D=0 in
order to produce the desired initial flow (Fig. 1a).
After this “spin-up,” F is set to zero at 2.3 days and
the calculation proceeds with only weak dissipation
" (see Table 1). For axisymmetric flows, a small (19
of the total kinetic energy) white noise perturbation is
introduced in the next time step to initiate instability.
Under the large terrestrial rotation rate (reversed in
sign) (Fig. 1b), the initial jet (with a velocity much
larger than typical on Earth) is weakly unstable and
produces some small amplitude waves with a zonal
wavenumber ~2 and a small increase in the eddy
kinetic energy ; but even after 11 days, the jet structure
remains intact. Under the slow Venus’ rotation rate,
Fig. 1c, the initial perturbations grow rapidly and
completely obliterate the jet structure in ~6 days.
After 14 days, the flow is one of solid rotation with
very weak, large-scale (wavenumber ~1 over the
domain) planetary waves.

We have obtained comparable results for several
other zonal flows with Venus’ rotation rate. In particu-
lar, we found the zonal flow %=, cos?@ breaks down
in only a few days, while the flow #=wu, cosf, solid
rotation, is stable for 43 days, even when repeatedly
perturbed by a white noise spectrum containing 109,
of the total kinetic energy. This confirms, though not
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rigorously, the conclusions of Rossby, and the theories
of linear barotropic instability and two-dimensional
turbulence.

One consequence of these results for numerical
modeling is that if the calculation domain is smaller
than the wavelength of the most unstable mode, the
flow can be artificially stabilized. This is illustrated by
our results for #=1, cos?§ for which the most unstable
mode has a zonal wavenumber of approximately 2
(Baines, 1976). We found that this flow was stable for
all calculations on a global domain covering less than
360° of longitude. Severe truncation of the motion
spectrum by coarse horizontal resolution can produce
a similar effect (Puri and Bourke, 1974, Baines, 1976).

The second example (Fig. 2) illustrates the barotropic
instability of large wavenumber flows. In this case, a
pseudo-baroclinic forcing (Williams, 1978) produces
eddies with latitudinal and longitudinal wavenumbers
of 5 and 7, respectively (Fig. 2a). Linear theory predicts
that these waves should be unstable. Indeed, after
~32 days the flow has evolved by two-dimensional
processes from these simple eddies into a flow containing
all scales of motion but with the majority of the kinetic
energy in the lower wavenumbers (Fig. 2b)—even
though the forcing at wavenumber 7 remains evident
(Fig. 2e). At 32 days F and D are set to zero and the
flow evolves freely with the result shown in Figs.
2c and 2f.5

All the calculations lead to the conclusion that two-
dimensional vorticity conserving exchanges on a slowly
rotating planet like Venus produce a “relaxed” state
consisting of a solid rotation plus the largest planetary-
scale advection wave (when the angular momentum
1s nonzero). We can speak of a “stable” or “relaxed”
flow because the cascade of enstrophy to smaller scales
leads to dissipation, even by small » values, making
the evolution irreversible. Furthermore, stability
analyses (Baines, 1976) define which zonal flows and
planetary waves comprise the “stable’ state so that the
stable state is unigue. The “‘relaxed” state of a non-
rotating planet is, at once, ‘‘smoother” but more
nonlinear than the ‘relaxed” state attained on a
rapidly rotating planet (cf. Williams, 1978).

The ‘“relaxation” time 7 determined by the non-
linear processes lacks a simple definition, but for
Venus’ kinetic energy level and spectral distribution
it is ~15 days. Since the dissipation time scale 7, (see
Table 1) greatly exceeds 7o, even weak forcing can
“pump” the flow to large energy levels. This last
property of two-dimensional turbulence is both the
key to and difficulty in understanding forced flows—as
we shall see in Section 5.

5. The forced vorticity equation : Numerical results

We now consider some examples of solutions to (5)
with the continuous forcing, drag and viscosity active

¢ See the previous footnote.



MARCH 1979 WILLIAM B. ROSSOW AND GARETH P. WILLIAMS 383

Fic. 2. Case B1: (a) Contours of ¢ and profile of #. Ay =2 km? 57, %*=0.05 km s, t=1.3 days; (b) as in Fig. 2a except Ay =50
km? s, 1=32.2 days; (c) as in Fig. 2b except {="78.2 days; (d) Normalized zonal spectrum of the kinetic energy on latitude circle
at 8= —28° The ordinate is in arbitrary units and the abscissa is the zonal wavenumber from 1 to 100. {=1.7 days; (e) as in Fig. 2d
except £=32.2 days; (f) as in Fig. 2d except {="78.2 days.
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- F16. 3. Case Cl1: (a) Contours of ¢ and profile of %; dotted lines denote localized forcing. Ay =30 km? 571, #*=0.1 km 571, {=11.5
days; (b) as in Fig. 3 except #*=0.05 km s™!, =46.0 days; (c) normalized zonal spectrum of KE at §=—28° ¢t=11.5 days; (d) as

in Fig. 3c except 1=46.0 days.

(Table 1). Several simple forms of F are chosen, each
one representing a different idea about the processes
driving the stratospheric motions (cf. Section 3). In
particular, we focus attention on how the flow character
depends on the strength and structure of the forcing.

The equilibration of the motion depends on the
balance between the drag and the forcing; it occurs
when the zonal mean kinetic energy, the eddy kinetic
energy and the zonal enstrophy and energy dissipation
rates show no secular trend. The values of rp are
chosen empirically and lie within the characteristic

time scales (5-30 days) of the observed variability
of UV cloud features (Suomi, 1974; Dollfus, 1975;
Traub and Carleton, 1978). Since the forcing and drag
time scales are nearly equal in equilibrated flows and
since 7, exceeds all other time scales, only two flow
regimes are possible: those with 7,79 or 75> 0.

a. Strong forcing, 7p<7o

In this regime, the nonlinear kinetic ehergy cascade
process is far less effective than the forcing and drag
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Fic. 4. Case C2: (a) Contours of ¢ and profile of #; dotted lines denote localized forcing. Ay =40 km? s 4*=0.1 km s, {=46.0
days; (b) as in Fig. 4a except ¢=>54.6 days; (c) normalized zonal spectrum of KE at 6= —28°, t=46.0 days; (d) as in Fig. 4c except

¢=54.6 days.

processes in determining the character of the flow.
For the two examples selected (Figs. 3 and 4) the flows
are generated by a localized forcing (as shown by the
dotted lines) that produces an equatorial jet and pair
of advection waves and are equilibrated by a drag with
a time scale (5 days) comparable to that for motions
near Earth’s surface. Fig. 3 shows a case where the
barotropically unstable, zonal equatorial jet produced
by the forcing breaks down into propagating advection
waves which interact with the advection waves pro-
duced directly by the forcing. However, the nonlinear

interactions are so slow compared to the drag that
little kinetic energy is transferred to larger scales.
Fig. 4 shows a more extreme case where the drag is so
strong that the unstable zonal jet does not breakdown
and the high-latitude advection waves do not even
propagate in the flow, i.e., the forcing produces the
exhibited flow directly.

b. Weak forcing, rp>>1o

In this regime, the nonlinear inertial cascade process
prevails and motions evolve toward the “relaxed” state
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¢. The 4-day wind

The Hadley-cell model (Gierasch, 1975) and gravity-
wave model (Fels, 1977) for the 4-day wind imply
very different horizontal distributions for the forcing
function. In the former model, the poleward advection
of a zonal flow by the Hadley cell could produce a
strong polar jet if angular momentum were conserved;
the shear instability of this jet and the subsequent
equatorward transport of angular momentum would

Fic. 5. Case D1: (a) Contours of ¥ and profile of #. Ay =230
km? s71, #*=0.1 km s, ¢=2.8 days; (b) as in Fig. 5a except
Ay=50 km? s7%, ¢=11.5 days; (c) as in Fig. 5b except ¢=17.2
days; (d) normalized zonal spectrum of KE at 8= —28° ¢=11.5
days; (e) as in Fig. 5d except ¢t=17.2 days.

of vorticity conserving flows (cf. Figs. 1 and 2). Figs.
2b and 2e show a situation where the smaller scales
of motion are energetic enough to be seen in the stream-
function even though the larger scales of motion domi-
nate the flow. Since Venus’ stratosphere lies many
scale heights above the surface, large drag forces are
not expected, i.e., 7p>>7o, so that the dynamics should
correspond to that of weakly forced flows.

F1c. 6. Case D2: (a) Contours of ¢ and profile of @. Ay =30
km? s, #*=0.12 km s7, {=3.4 days; (b) as in Fig. 6a except
Ay=40 km? s}, u*=0.1 km s, 1=20.7 days; (c) as in Fig. 6b
except {=24.1 days; (d) normalized zonal spectrum of KE at
6= —25.7, t=20.7 days; (e) as in Fig. 6d except £=24.1 days.
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F1G. 7. Case C3: (a) Contours of ¢ and profile of #; dotted lines denote localized forcing. Ay =50 km? s #*=0.2 km s, ¢=11.5
days; (b) as in Fig. 7a except Ay =100 km? 571, 1=34.5 days; (c) as in Fig. 7b except £=>51.7 days; (d) normalized zonal spectrum
of KE at §=—28°, =234.5 days; (e) as in Fig. 7d except t=51.7 days.
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then lead to a net upward transport of planetary
momentum by the Hadley cell (Gierasch, 1975).
Fig. 5 supports this hypothesis by showing that the
nonlinear, two-dimensional exchanges can maintain
a nearly constant angular velocity flow, even though
the forcing tries to 'produce, polar jets. Thus, these
processes, together with a simple Hadley cell, could
produce a 4-day wind. Other properties of the flow
in Fig. 5, the flat profile of the mean zonal wind with
its hint of a midlatitude jet and the midlatitude kinetic
energy spectrum with its hint of a “knee” at inter-
mediate wavenumbers, have also been attributed to
Venus’ UV cloud features (Travis, 1978).

We cannot conclude, however, that we have estab-
lished the appropriate horizontal distribution for the
forcing of the Venus stratosphere, because other distri-
butions of forcing can produce the same type of flow,
e.g., one that tends to produce equatorial jets rather
than polar jets (Fig. 6). Since the meridional profile
of the mean zonal velocity varies in time (cf. Figs. 6b
and 6c)—because of the large scale waves—there is
really no way to distinguish between this solution and
that of Fig. 5 using the limited Mariner 10 photographs.
Indeed, we cannot even demonstrate that the forcing
must be axisymmetric, as an examination of Fig. 7
shows. Here, a localized forcing, moving with the sun
[a possible interpretation of the nature of the forcing
in Fels’ (1977) model] produces a mean zonal velocity
profile and a midlatitude kinetic energy spectrum
qualitatively similar to those in Fig. 5. This result is a
consequence of the fact that the flow is dominated by
inertial effects rather than the forcing and drag effects.

d. The Y feature

The planetary-scale Y-like UV marking which moves
around the planet has a highly variable shape and
speed (Dollfus, 1975). The production of these UV
features and their relation to the clouds and the
dynamics is unknown? so we can only consider a quali-
tative comparison between our results and the observed

- flow. Specifically, the three basic characteristics of the
Y—its hemispheric symmetry, longitudinal asymmetry
and apparent solid-body motion—coincide with the

- properties of the stable advection wave in the “relaxed”

state of two-dimensional flows. An excellent example
of such a wave is shown in Fig. 7; the wave also occurs
in Figs. 4-6 but with a smaller amplitude relative to
the zonal flow. Comparison of these figures indicates

"For example, pressure variations 'at constant temperature
can control the density and location of condensate clouds. On
rapidly rotating planets, the pressure gradients and steamfunction
are correlated so that cloud features reveal the streamfunction
under these circumstances (cf. Williams, 1979). On Venus, the
sulfuric acid clouds are not condensationally active (Rossow,
1978) and the correlation between streamfunction and pressure
gradients does not necessarily apply. However, the best corre-
spondence in our results is between the streamfunction and the
cloud features.

JOURNAL OF THE ATMOSPHERIC SCIENCES"

VoLuME 36

that all horizontal distributions of forcing, whether
axisymmetric or localized, produce planetary-scale
advection waves in barotropically unstable states. The
variability in the flow pattern results from continual
excitement of shorter wavelengths by the forcing.

The interpretation of the Y feature as a single
global-scale advective wave does not require special
conditions for the hemispheric parts to propagate
together nor the existence and phase coupling of
separate midlatitudinal and equatorial wave modes
(cf. Belton et al., 1976b).

6. Conclusions

The motions in the Venus stratosphere are only
weakly nondivergent—because of the great efficiency
of weak vertical motions in transporting heat in a
massive atmosphere and because of the large static
stability. Consequently, we have investigated the
properties of a one-level atmosphere subject to weak
forcing and find that the circulations are dominated
by inertial effects—the turbulent cascade of kinetic
energy and enstrophy—and that their “relaxed” state
resembles that of two dimensional vorticity-conserving
flows. On a slowly rotating planet, this ‘“relaxed’ state
consists of a solid-body rotation plus an advection
wave lying symmetrically about the equator and having
a zonal wavenumber of unity. Although these large
scales predominate, the flow is fully nonlinear in
contrast to the quasi-linear Rossby-~Haurwitz wave
regime occurring on rapidly rotating planets.

The observations of the stratospheric flow on Venus
from Mariner 10 are so restricted in spatial and temporal
coverage that deducing the nature of the global flow
pattern from these data cannot avoid aliasing errors
(cf. Belton et al., 1976a) or model fitting (cf. Limaye
and Suomi, 1977). The ground based observations have
similar problems (Belton et al., 1976a). Given these
limitations, the qualitative agreement between interpre-
tations of the Venus’ data and the numerical model is
satisfactory. However, the data are not of sufficient
quality to distinguish between different horizontal
distributions of forcing.

Our results have at least two important consequences
for further observations of the Venus stratospheric
dynamics: 1) because of the global extent of the large-
scale waves, and the long, dynamical time scale,
systematic global observations over a very long time
period are required to obtain the proper statistics
of the flow; and 2) when the large-scale circulation is
properly described, we still may not be able to deduce
the nature of the processes driving these motions
because the nonlinear balances of the flow are charac-
teristic of the inertial cascade process rather than the
forcing. To isolate the forcing processes will require
very accurate, highly resolved observation of the
smaller, less energetic scales.

Analogous problems will also arise in further numeri-
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cal simulation of the Venus stratospheric dynamics. In
particular, the proper representation of the inertial
cascade process requires relatively high resolution in
the model, even though the largest scales dominate the
motion. Coarse resolution or severe truncation of the
spectrum has two serious effects: 1) it increases the
importance of the “eddy diffusion” term for the larger
scale motions, making the solution very dependent
on a poorly understood parameter (cf. Puri and Bourke,
1974), and 2) it artificially stabilizes some of the
planetary scale waves, by removing the smaller wave
components required to simulate their nonlinear inter-
actions properly (cf. discussion in Section IV and
Baines, 1976). Above all, the solution’s lack of de-
pendence on the forcing structure makes it difficult to
determine the actual physics by simulation.

In this study, we have not identified the processes
producing the four-day wind nor have we examined
directly the role played by gravity waves; and perhaps
the two questions are related. However, we tentatively
conclude that the stratospheric dynamics of Venus is
dominated by two-dimensional interactions.
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