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Abstract. Microwave observations at low frequencies ex-
hibit more sensitivity to surface and subsurface properties
with little interference from the atmosphere. The objective
of this study is to develop a global land emissivity product
using passive microwave observations from the Advanced
Microwave Scanning Radiometer – Earth Observing Sys-
tem (AMSR-E) and to investigate its sensitivity to land sur-
face properties. The developed product complements ex-
isting land emissivity products from SSM/I and AMSU by
adding land emissivity estimates at two lower frequencies,
6.9 and 10.65 GHz (C- and X-band, respectively). Obser-
vations at these low frequencies penetrate deeper into the
soil layer. Ancillary data used in the analysis, such as sur-
face skin temperature and cloud mask, are obtained from
International Satellite Cloud Climatology Project (ISCCP).
Atmospheric properties are obtained from the TIROS Oper-
ational Vertical Sounder (TOVS) observations to determine
the small upwelling and downwelling atmospheric emissions
as well as the atmospheric transmission. A sensitivity test
confirms the small effect of the atmosphere but shows that
skin temperature accuracy can significantly affect emissiv-
ity estimates. Retrieved emissivities at C- and X-bands and
their polarization differences exhibit similar patterns of vari-
ation with changes in land cover type, soil moisture, and veg-
etation density as seen at SSM/I-like frequencies (Ka and
Ku bands). The emissivity maps from AMSR-E at these
higher frequencies agree reasonably well with the existing
SSM/I-based product. The inherent discrepancy introduced
by the difference between SSM/I and AMSR-E frequencies,
incidence angles, and calibration has been assessed. Sig-
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nificantly greater standard deviation of estimated emissivi-
ties compared to SSM/I land emissivity product was found
over desert regions. Large differences between emissivity
estimates from ascending and descending overpasses were
found at lower frequencies due to the inconsistency between
thermal IR skin temperatures and passive microwave bright-
ness temperatures which can originate from below the sur-
face. The mismatch between day and night AMSR-E emis-
sivities is greater than ascending and descending differences
of SSM/I emissivity. This is because of unique orbit time of
AMSR-E (01:30 a.m./p.m. LT) while other microwave sen-
sors have orbit time of 06:00 to 09:00 (a.m./p.m.). This high-
lights the importance of considering the penetration depth
of the microwave signal and diurnal variability of the tem-
perature in emissivity retrieval. The effect of these factors
is greater for AMSR-E observations than SSM/I observa-
tions, as AMSR-E observations exhibit a greater difference
between day and night measures. This issue must be ad-
dressed in future studies to improve the accuracy of the emis-
sivity estimates especially at AMSR-E lower frequencies.

1 Introduction

At lower frequencies, passive microwave observations are
less affected by the atmosphere and are more sensitive to the
surface and subsurface properties like soil moisture and soil
texture (Choudhury, 1989, 1993). Because of this greater
sensitivity and a greater penetration depth, land emissivity
estimates at these lower frequencies are appropriate for appli-
cations like soil moisture estimation, freeze/thaw state, land
surface temperature, and vegetation structure (e.g. Zhang et
al., 2010; Tedesco and Kim, 2006; Min et al., 2010; Njoku
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et al., 2003; Jones et al., 2007). In addition, land emissivity
values at higher frequencies near the window regions can be
extrapolated to microwave sounding frequencies to provide
the critical boundary condition in numerical weather predic-
tion (NWP) models (Weng et al., 2001; Karbou et al., 2005a).
Interpretation of microwave emissivity over land is not very
straightforward as it is affected by several factors such as soil
wetness and roughness, vegetation cover, macroscopic mix-
tures of vegetation, soil and rock, and terrain slopes, as well
as sensor properties (i.e. frequency, polarization, and inci-
dence angle).

Land emissivity has been retrieved globally since the
1990’s from different sensors such as the Special Sensor
Microwave Imager (SSM/I) and the Advanced Microwave
Sounding Unit (AMSU) at frequencies greater than or equal
to 19 GHz. Choudhury (1993) used observations from
SSM/I to investigate the inter-annual variation of land sur-
face microwave reflectivity (reflectivity = 1-emissivity) and
suggested that it could be a good surrogate for changes in
soil moisture and vegetation cover. Prigent et al. (1997, 1998,
2006) used SSM/I observations to estimate land emissivity.
Their technique was extended to observations from the Ad-
vanced Microwave Sounding Unit (AMSU) (Karbou et al.,
2005b). They found good consistency between land emis-
sivity and surface properties such as soil moisture and veg-
etation cover type. Jones et al. (1997, 2004) also estimated
land emissivity from AMSU observations. Overall consis-
tency was found between the spatial distribution of the emis-
sivity values obtained with SSM/I and AMSU and the global
land cover-land use maps (Karbou et al., 2006). These find-
ings were in line with those obtained from forward model-
ing of land emissivity. AMSR-E emissivities for frequencies
higher than 10.7 GHz was estimated using MODIS skin tem-
perature product (Moncet et al., 2011a). Weng et al. (2001)
and Weng (2007) used a two-stream radiative transfer model
for different land cover types to infer land emissivity and
noted the complexity of modeling land emissivity over some
surface classes like snow covered soils, sea ice and deserts.
Land emissivity estimates at higher frequencies (higher than
19 GHz) are sensitive only to the topsoil layer, of the order of
few millimeters, depending on the soil wetness, texture and
frequency, and vegetation cover. Measurements at these fre-
quencies are therefore not as useful as lower frequencies to
infer subsurface parameters (Njoku et al., 2003).

The Advanced Microwave Scanning Radiometer – Earth
Observing System (AMSR-E) sensor has two channels at
6.925 and 10.65 GHz (the C and X bands) beside those avail-
able onboard SSM/I. These channels penetrate deeper and
are more sensitive to the surface and subsurface. Also, this
sensor is on a polar orbiting satellite with different overpass
times in early afternoon and morning (01:30 a.m./p.m.), as
compared with most SSM/I overpass times between 06:00
to 09:00 (a.m./p.m. LT). Since the AMSR-E overpass time
is closer to maxima and minima temperature of the day, the
contrast between early morning and early afternoon measure-

ments might be used to infer surface and subsurface proper-
ties: the early morning (01:30 am) observation occurs when
the soil temperature profile tends to be more nearly uniform
within the sensed soil layer and the afternoon observation oc-
curs when the temperature difference between the skin and
deeper layers is large (Njoku et al., 2003). When combined
with other microwave sensors, such as SSM/I and WindSat,
the AMSR-E measurements could also provide a better char-
acterization of the diurnal temperature cycle.

The spatial resolution of AMSR-E lower frequencies
is coarser compared to frequencies higher than 19 GHz.
AMSR-E data analysis has revealed that the C and X bands
are contaminated with Radio Frequency Interference (RFI)
especially over US, the Middle East, and Europe. This RFI
contamination problem can reduce the value of C- and X-
band measurements. A spectral difference technique has
been developed for AMSR-E and WindSat to quantify the
RFI magnitude and extent over the US and at global scale
(Li et al., 2006; Njoku et al., 2005).

Microwave emissivity is needed to improve the develop-
ment of physically based precipitation retrievals over land
under all weather conditions such as clear, cloudy and pre-
cipitating sky from 10–190 GHz. Related studies suggest that
significant differences exist among different available prod-
ucts (Y. Tian, personal communication, 2011.) and more in-
formation spectrally and temporally are needed to obtain a
reliable surface contribution over land in passive microwave
observations.

The objective of this work is twofold; (1) first, develop
a global land emissivity product using AMSR-E data over
more than six years (June 2002 to June 2008) at all frequen-
cies. The result of this study adds to the existing land emis-
sivity products from SSM/I and AMSU and provides land
emissivity estimates at two lower frequencies, the 6.9 and
10.7 GHz. (2) Second, investigate the sensitivity of the land
emissivity estimates to changes in land surface conditions
with a particular emphasis on the lower frequencies and their
sensitivity to surface properties. The AMSR-E-based prod-
uct is compared to estimates of land emissivity from SSM/I
after accounting for the inherent differences between the sen-
sors (incident angles and frequencies). A sensitivity analysis
is also conducted to assess the effect of uncertainties in the
inputs to the emissivity retrieval on the accuracy of emis-
sivities. In addition, this study investigates the differences
between day and night retrieved emissivities from AMSR-E
and compares it to the differences obtained with SSM/I esti-
mates.

2 Land surface emissivity calculation and data sets

The algorithm adopted to determine land emissivities in
this study is similar to the approach proposed by Prigent
et al. (1997, 1998). Although the approach was initially
tested using SSM/I observations the algorithm is expandable
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to lower frequencies as well. Few adjustments are needed,
however, to account for minor differences in incidence an-
gles, spatial resolution, and channel frequencies.

2.1 Theory

Assuming that land surface is flat and specular and con-
sidering the atmosphere as a non-scattering plane-parallel
medium, the emissivity can be written as:

ε(p,υ) =
Tb(p,υ)

−T
↑

atm−T
↓

atme−τ(0,H)/µ

e−τ(0,H)/µ(Ts−T
↓

atm)
(1)

whereε(p,υ) andTb(p,υ)
are the land surface emissivity and the

measured brightness temperatures at polarization “p” (hori-
zontal, “H”, or vertical, “V”) and frequencyυ, respectively.
Ts is the skin temperature andT ↓

atm andT
↑

atm are the down-
welling and upwelling brightness temperatures from the at-
mosphere, respectively:

T
↓

atm=

∫ 0

H
T (z) · [α(z)/µ] ·e−τ(z,0)/µdz (2)

T
↑

atm=

∫ H

0
T (z) · [α(z)/µ] ·e−τ(z,H)/µdz (3)

In these equations,T (z) is the atmospheric temperature pro-
file, α(z) the atmospheric absorption at altitudez, µ the co-
sine of incidence angle andτ the atmospheric extinction be-
tween two altitudes which is written as:

τ(z0,z1) =

∫ z1

z0
α(z)dz (4)

The implementation of this algorithm requires an accurate
characterization of the atmospheric temperature and humid-
ity to determine atmospheric transmissivity. Another key pa-
rameter is the thermal skin temperature. The following sec-
tion describes the data sets needed for the implementation of
the approach.

2.2 Data sets

2.2.1 AMSR-E microwave brightness temperatures

AMSR-E is a twelve-channel, six-frequency, total power
passive-microwave radiometer system. It measures bright-
ness temperatures at 6.925, 10.65, 18.7, 23.8, 36.5, and
89.0 GHz (Njoku and Li, 1999). Vertically and horizontally
polarized measurements are made at all frequencies. The
Earth-emitted microwave radiation is collected by an off-
set parabolic reflector 1.6 m in diameter that scans across
the Earth along an imaginary conical surface, maintaining
a constant Earth incidence angle of 55◦. The spatial reso-
lution of the individual measurements varies from 5.4 km at
89.0 GHz to 56 km at 6.9 GHz. AMSR-E/Aqua L2A Global
Swath Spatially-Resampled Brightness Temperatures (both

ascending and descending) are used for the analysis and ob-
tained from National Snow and Ice Data Center (NSIDC).
Higher frequency observations are resampled to match the
lower frequencies spatial resolution. For each frequency, we
select the resampled data having the closest location to the
original satellite footprint and re-project these footprints to a
0.25◦ (at equator) equal area grid.

2.2.2 Ancillary data sets

Satellite infrared-visible-based products from the Interna-
tional Satellite Cloud Climatology Project (ISCCP) provide
cloud cover and surface skin temperatures. The ISCCP-DX
data provides information every 3 h since 1983 at a∼30 km
spatial resolution, based on merged observations from geo-
stationary and polar-orbiting satellites (Rossow and Schiffer,
1999). The ISCCP quantities were chosen for the satellite
view closest to nadir from among all available results and
resampled to match the 0.25◦ equal area grid adopted for
the passive microwave observations. The infrared-based skin
temperatures represent the top surface temperature, which
can be the top of very dense vegetation canopies or a mix
of canopy and soil temperatures for less dense vegetation.

The TIROS Operational Vertical Sounder (TOVS) dataset
available with ISCCP (Rossow and Schiffer, 1991) provides
global information on air temperature and water vapor pro-
files at 9 vertical layers ranging from the surface to 1 mb
pressure. These profiles are available on a daily basis. We
assume that the impact of diurnal variations on the observed
brightness temperature is minimal. Data are originally avail-
able in a 280 km equal area map but are regridded to coincide
with the AMSR-E data. These atmospheric parameters are
used to calculate the upwelling and downwelling brightness
temperatures, as well as the atmospheric transmission. The
uncertainties in atmospheric information especially TOVS
data set are 2–4 K for air temperature and 20–25 % for atmo-
spheric column precipitable water below the 300 hPa level
(Zhang et al, 2006). TOVS data may include climatological
values when actual measures are missing which can intro-
duce an error in the atmospheric corrections (Prigent et al,
1998). TOVS data were selected in this study to be consis-
tent with ISCCP products such as skin temperature, which is
also based on TOVS data (See Zhang et al., 2006 for compar-
isons of the TOVS product with other atmospheric datasets).

For evaluation of the retrieved emissivities, the microwave
land surface emissivity data set provided by Prigent et
al. (2006) is used. This data set was obtained for 1993–
2008 using the Special Sensor Microwave/Imager (SSM/I)
observations, along with ISCCP-DX data (skin temperature
and cloud cover), and NCEP Reanalysis data (Kalnay et al.,
1996) (for atmospheric corrections) for its retrieval. Emissiv-
ities at 19.35, 37.0 and 85.5 GHz in both horizontal and verti-
cal polarizations, and the 22.235 GHz sampled in the vertical
only, are available in monthly composite maps.
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2.3 Determination of AMSR-E land surface emissivities

AMSR-E overpass times are near 01:30 am (ascending) and
01:30 p.m. (descending) local time at the equator. Since skin
temperatures from ISCCP-DX data are available every 3 h,
microwave and thermal observations are not necessarily co-
incident. Therefore, a Spline interpolation between the eight
available skin temperature measurements every day is used to
infer the complete skin temperature diurnal cycle. The Spline
method can estimates the daily maxima and minima that can
occur between two 3-hourly samples (Aires et al., 2004). Ac-
tual acquisition time for each microwave pixel at each swath
is used in the Spline interpolation to estimate more accurately
the physical temperature. This may be critical in arid re-
gions where the temperature diurnal cycle has much larger
amplitude. Also, if either of two consecutive (before and af-
ter AMSR-E acquisition times) cloud flags indicates cloudy
conditions, the microwave pixel is flagged as cloudy.

The upwelling and downwelling atmospheric emissions
are estimated using the Liebe’s MPM model to determine the
atmospheric absorption (Liebe et al., 1993). Upwelling and
downwelling brightness temperatures, as well as atmospheric
transmission, are calculated using Eqs. (2), (3), and (4) for
the AMSR-E incidence angle of 55◦. Atmospheric correc-
tions are applied to the ascending and descending overpasses.
Because of the TOVS daily resolution, the same atmospheric
profiles are used to correct atmospheric effects for both the
ascending and descending overpasses.

Monthly composite emissivity maps are created for each
frequency and polarization from the instantaneous cloud-free
land surface emissivity maps. In the case of persistent cloud
(longer than 30 d, which is possible in some tropical loca-
tions), land emissivity is not retrieved.

3 Land emissivity sensitivity analysis and evaluation

3.1 Sensitivity analysis

The inputs to the retrieval (skin temperature, column water
vapor and brightness temperature) were tested to determine
the sensitivity of the emissivity retrieval to errors in these
parameters. The uncertainty in the atmospheric water vapor
profile can be as much as 20–25 % (English, 1995; Lin and
Rossow, 1994; Zhang et al., 2006). The sensitivity of the
retrieved emissivity to the atmospheric water vapor was as-
sessed by introducing biases into the atmospheric profile and
determining their impact on the emissivity. A constant in-
crease of 5, 10, and 25 % was applied globally to the water
vapor profiles. The sensitivity was assessed for all AMSR-E
frequencies. The results (Table 1) show that the sensitivity of
land emissivity to water vapor errors decreases as frequency
decreases. Sensitivity at C- and X-bands is the smallest. A
25 % change in water vapor leads to a global mean 0.0016
change of emissivity at 6.9 GHz and 0.03 at 89.0 GHz. The

Table 1. Sensitivity of the emissivity retrieval in terms of global
average change of emissivity (horizontal polarization) to 5, 10, and
25 % increase in water vapor profile.

Variability in
global mean emissivity

Changes implemented 6.9 GHz 10.7 GHz 18.7 GHz 36.5 GHz 89 GHz

+5 % 0.00034 0.0006 0.0013 0.0029 0.0063
+10 % 0.00065 0.0012 0.0025 0.0057 0.0127
+25 % 0.0016 0.003 0.0063 0.0145 0.0323

amount of the water vapor is much larger near the equator
compared with higher latitudes. Therefore, the effect of the
water vapor errors on emissivity retrievals is greater in the
tropics and arid regions close to the equator. Moreover, given
the seasonal variation of water vapor, larger errors are ex-
pected in summer than in winter. These results are similar to
the test results for SSM/I (Prigent et al., 1997).

The physical skin temperature plays an important role at
lower frequencies, since the microwave radiation is more
sensitive to the surface than to the atmosphere. Recent stud-
ies show that available global skin temperatures have signifi-
cant differences, generally only a few degrees but up to 20 K
in deserts (Jimenez et al., 2011). ISCCP skin temperature
has some uncertainties that tend to increase as temperature
increases. The recent study shows that root mean square
(rms) differences between ISCCP and MODIS skin temper-
ature could be 5 K and 2.5 K for day and night, respectively
(Moncet et al., 2011b). However, in this study the ISCCP-
DX product was used because it has a fine temporal resolu-
tion (3 hourly). This allows us to better characterize the diur-
nal cycle and address the differences between day and night
estimated emissivities which one of the main goal of this
study. The relationship between emissivity and physical skin
temperature from thermal infrared is reciprocal according to
Eq. (1). The sensitivity analysis showed that the difference in
global mean emissivity retrieval could be as much as 0.025
for skin temperature differences of 5 K. Therefore, at lower
frequencies, skin temperature is the most important source
of inaccuracy. Although possible biases in skin temperatures
from ISCCP can affect the absolute emissivity value, its ef-
fect on emissivity variability should not be significant during
the AMSR-E period because the ISCCP results are homoge-
neous in quality over this time period (Zhang et al., 2006).

The uncertainty of microwave instrument calibration and
its effect on the emissivity retrieval are similar to results from
previous studies (Prigent et al., 1997; Karbou et al., 2005b).
For instance, a 3 K decrease in observed brightness tempera-
ture leads to 0.01 decrease of emissivity at 36.5 GHz (hor-
izontal polarization). The absolute accuracy of AMSR-E
brightness temperatures has been reported as 1.0 K (Kawan-
ishi et al., 2003), thereforeTb biases will not significantly
affect the accuracy of emissivity retrieval.
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3.2 Comparison to the SSM/I product

We evaluate our AMSR-E emissivity product by compar-
ing it with the SSM/I-based emissivity product (Prigent et
al., 2006) at three frequencies (19.35, 37.0, and 85.5 GHz).
The common channels between AMSR-E and SSM/I have
small differences in their spectral responses and incidence
angles: AMSR-E frequencies are centered at 18.7, 36.5, and
89.0 GHz with an incidence of angle 55◦ compared to 53◦ for
SSM/I. Moreover, the overpass times of both sensors do not
match. It is necessary to accurately determine the systematic
discrepancies introduced by these differences.

The radiative transfer model (RTM) described in section
2.1 was used to assess the effect of the differences in the
viewing geometry and frequency. Simulated brightness tem-
peratures at 37 and 36.5 GHz (also between 18.7, 19.35 GHz,
and 89, 85.5 GHz) with the 2◦ difference in incidence angle
(55◦ for SSM/I and 53◦ for AMSR-E incident angle) were
compared by using the same skin temperature, atmospheric
air temperature, and water vapor profiles. Skin temperatures
coincident with the descending orbits of AMSR-E for July
2005 were used in order to minimize the effect of the diur-
nal cycle. Emissivities for AMSR-E and SSM/I observations
were estimated using aforementioned algorithm. The model
was forced by the monthly mean emissivity at descending
overpass for SSM/I frequencies and incidence angle. SSM/I
emissivities were retrieved with the exact model and infor-
mation used in this study for the AMSR-E descending over-
pass. The global mean difference between two simulated
brightness temperatures at 37 GHz horizontal polarization is
0.3 K with a standard deviation of 6.5 K. One should note
that emissivity by itself is angular dependent, therefore part
of the brightness temperature differences are related to this
differences (Prigent et al., 2008). This simulated brightness
temperatures difference can be translated to emissivity differ-
ence between AMSR-E and SSM/I sensors due to geometry
and frequency difference.

SSM/I derived emissivities (Prigent et al., 2006) are com-
pared with our AMSR-E product after removing the differ-
ences caused by geometry and frequency. Figure 1 shows
histograms of the differences at 18.7, 36.5, and 89.0 GHz
(horizontal polarization). The mean and standard devia-
tion of the differences between the two products are respec-
tively 0.006 and 0.0225 (at 36.5 GHz, horizontal polariza-
tion), which indicates good agreement. The mean and stan-
dard deviation of the differences between both emissivity
products (at 36.5 GHz, horizontal polarization) are respec-
tively 0.0061 and 0.031 without accounting for differences
in geometry and frequencies. The largest differences ap-
pear in arid and mountainous locations. The differences in
mountainous locations can be attributed to differences in the
fields of view of these sensors. Topographic features and
the presences of mountainsides may amplify the effect of the
difference in fields of view with respect to flat prairies-like
areas. No altitude effect correction has been done for at-

Fig. 1. Normalized histogram of the difference between SSM/I and
AMSR-E products at close to 18.7, 36.5, and 89.0 GHz (horizontal
polarization) for July 2003.

mospheric corrections in mountainous regions. The TOVS
profiles are properly terminated over high terrain but only
approximately as the topographic variability is smaller scale
that the available surface pressure information; nevertheless,
there is much less atmospheric effect over high terrain be-
cause the column water vapor amounts are much smaller.
No adjustment has been done for atmospheric corrections
in mountainous regions to account for the altitude and its
effect on temperature and water vapor profiles. The differ-
ences in arid regions may be caused by the difference in
overpass times and the difference of the diurnal temperature
cycle amplitude at the surface and at deeper layer below sur-
face (Prigent et al., 1999). This difference is exaggerated at
the AMSR-E overpass times as compared to the SSM/I over-
pass times near dawn and dusk. In coastal areas, the different
spatial resolutions can produce large differences as well be-
cause of mismatch in the amounts of open water included
in the field of view of each sensor. The bias at 89.0 GHz
can be attributed to differences between the two different at-
mospheric correction data sets (Zhang et al., 2006), as the
effect of atmosphere is larger at higher frequencies. The
SSM/I-based emissivity product used the NCEP reanalysis
(Kalnay et al., 1996) for atmospheric information, while this
study used the TOVS product. The SSM/I based emissiv-
ity made use of the TOVS data set as atmospheric informa-
tion in its first version to correct for the atmospheric effect
(Prigent et al., 1997). NCEP reanalysis atmospheric profiles
were used in subsequent version because of some flaws that
were noticed in SSM/I based estimates when TOVS data es-
pecially over deserts (Prigent et al, 1998), where the TOVS
product is generally missing, and climatology is used.
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Fig. 2. Composite monthly mean land surface emissivity at 10.7, and 36.5 GHz (horizontal polarization) for January and July 2003.

4 Results and discussion

Cloud-free AMSR-E brightness temperatures from June
2002 through June 2008 are used to globally retrieve land
surface emissivities. The ISCCP cloud mask indicates that,
on average, more than 50 % (monthly average) of the land,
is cloud covered (Rossow and Schiffer, 1999), which signifi-
cantly limits the instantaneous spatial coverage. In addition,
gaps between consecutive orbit swaths induce further loss of
data and reduce the coverage. The instantaneous coverage
of the product varies between 25 and 35 % depending on the
season.

4.1 Land emissivity and surface physical properties

Examples of monthly mean composites of estimated land
emissivities for January and July 2003 for horizontal polar-
ization at 10.7 and 36.5 GHz are presented in Fig. 2. For rel-
atively smooth bare soils, land surface emissivity is smaller
in horizontal polarization compared to vegetated areas. For
instance, in North Africa and Saudi Arabia, which are mostly
dominated by bare soils and desert, a noticeably smaller
emissivity can be seen compared to highly vegetated regions
such as Amazon or Congo, which exhibit relatively larger
emissivities. Generally, the 10.7 GHz shows smaller emis-
sivity values in arid and semi-arid regions (North Africa
and Australian Desert) compared with the same locations
at 36.5 GHz. This is also observed in Australia, where
smaller emissivities are obtained in deserts, whereas the veg-
etated western coast shows larger horizontal emissivity val-
ues. Fig. 2 shows emissivity estimates from microwave tem-

perature at horizontal polarization which show opposite be-
havior when compared to estimates from vertical polariza-
tion observation, with the largest emissivity values found in
desert areas. This behavior is due to the different responses
of horizontal and vertical polarization emissivities to the di-
electric constant (Njoku and Li, 1999; Owe et al., 2001).
Also, seasonal variation of emissivity can be seen at some
places such as in Russia where the 10.7 and 36.5 GHz show
large differences in January and July with changes in land
and snow covers. The seasonal variations of land surface
emissivities with land cover change are discussed later.

The radiative properties of vegetation-covered surfaces are
controlled by the dielectric properties of the vegetation com-
ponents, their density, and the relative size of the vegeta-
tion components with respect to wavelength. As the sur-
face roughness and wetness decrease, the polarization dif-
ference increases (Choudhury, 1989). As vegetation density
increases the surface roughness also increases, which causes
more scattering of microwave radiation. Figure 3 shows that
most vegetated areas have polarization differences less than
2%. The largest polarization difference is observed in arid
and semi-arid regions such as North Africa. The polariza-
tion difference at 6.9 GHz in these regions is systematically
larger than at 89.0, which can be attributed to greater rel-
ative size of desert roughness to wavelength at 89.0 GHz.
Bare soil is rougher for observations at higher frequencies,
as the relative size of the surface to the wavelength and the
scattering are greater. This higher sensitivity to soil rough-
ness at higher frequencies in desert areas causes larger polar-
ization differences at lower frequencies in desert areas (Pri-
gent et al., 2001).
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Fig. 3. Difference between vertical and horizontal polarizations
land surface emissivity at 6.9 GHz (top), and 89.0 GHz (bottom) for
January 2003.

Figure 4 shows the temporal variations of Northern and
Southern Hemisphere monthly mean polarization differences
at different frequencies for desert, deciduous woodland and
rain forest areas, based on the vegetation classification
introduced in (Matthews, 1983). As expected, the difference
between horizontal and vertical polarization emissivity de-
creases with increasing frequency. The polarization gradient
is larger at 6.9 GHz than at 89.0 GHz in all land classes (most
not shown). Deserts have larger polarization differences but
smaller interannual variability, since in arid regions the sea-
sonal variation of soil moisture and vegetation cover is not
significant (Fig. 4a, b). Most of the frequencies confirm this
small seasonal variation in desert areas, except 89.0 GHz,
which may include some residual atmospheric perturbations
in the emissivity retrieval. However, vegetated areas (for ex-
ample deciduous woodland areas) show smaller polarization
differences with larger seasonal variations that correspond
to variations in vegetation density (Fig. 4c, d). In places
with constant high-density vegetation, such as rain forest, the
polarization differences exhibit almost no seasonal variation
(Fig. 4e, f), as the change of the land cover is not significant.
This polarization difference can be considered as an indicator
of land cover and vegetation type, as the polarization differ-
ence decreases with increasing vegetation density.

The relationship between the retrieved land surface emis-
sivity and physical properties, such as Normalized Differ-

ence Vegetation Index (NDVI) and soil moisture content,
is investigated to assess the sensitivity of lower frequency
emissivities to these parameters. The comparison between
monthly average (July 2005) global emissivity polarization
difference (V-H) at 6.9 and 10.7 GHz and NDVI values from
MODIS observations distributed by the Land Processes Dis-
tributed Active Archive Center (LP DAAC) is displayed in
Fig. 5a, b. Note that y-axis in this scatter plot is logarith-
mic to make the relationship clearer. The peak frequency
of pixels occurs at small NDVI and large (logarithm of)
emissivity differences. In general, the emissivity polariza-
tion difference decreases as NDVI increases. However, at
larger NDVI values in high density vegetated regions, the
correlations between emissivity polarization difference and
NDVI are much lower. The regions with NDVI greater than
0.6 show different structures than NDVI less than 0.6 with
respect to emissivity in Fig. 5a and b. It was found that
these regions with NDVI greater than 0.6 and greater emis-
sivity belong to regions that are flooded or in coastal re-
gions. These regions also showed significant seasonal varia-
tion. Figure 5c and d illustrate the emissivity polarization dif-
ferences at 6.9 and 10.7 GHz versus the soil moisture product
from the Advanced Scatterometer (ASCAT) provided by the
European Organization for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT) (Bartalis et al., 2008). The cor-
relation between log of emissivity polarization differences at
10.7 GHz and soil moisture content is less than 70 % and
is 71 % at 6.9 GHz. Weaker correlations (between 65 % to
70 %) were found at higher frequencies (higher than 19 GHz)
(not displayed). As soil moisture increases the logarithm of
emissivity difference decreases. One should note that soil
moisture and NDVI are interrelated which may be the rea-
son for the similar relationship between emissivity and these
parameters (Prigent et al., 2005).

The agreement between monthly variations of NDVI and
(H-V) emissivity polarization difference at 10.7 GHz for
each pixel at global scale was analyzed for the period from
January 2003 through December 2007. The results shown in
Fig. 6 confirm that correlation of emissivity monthly varia-
tion with vegetation density variation is very small in desert
areas (North Africa; Saudi Arabia) and in densely vegetated
area such as Amazon and Congo basins. In predominantly
vegetated areas emissivity may be sensitive to other physi-
cal parameters such as vegetation water content. In densely
vegetated areas, emissivity is less sensitive to soil moisture.
However, it is difficult to accurately distinguish between the
effects of soil moisture and vegetation on land emissivity and
its polarization difference, as the determination of the exact
relationship between these parameters and emissivity is not
fully comprehended (Aires et al., 2005; Prigent et al., 2005,
2001). It is also worth noting that NDVI in Tropical regions
could have some cloud contaminations because of the per-
sistency of cloudy conditions in these regions. This may re-
duce the correlation between NDVI and emissivity polariza-
tion difference.
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Fig. 4. Seasonal variation of the vertical and horizontal polarization differences at 6.9, 18.7, 36.5, and 89.0 GHz in(a, b) desert regions(c,
d) deciduous woodland(e, f) rain forest (Matthew’s vegetation classification (Matthews, 1983) for Northern and Southern Hemisphere.

The monthly variation of emissivity polarization differ-
ences at 10.7 GHz H-V (not V-H) and those of NDVI and soil
moisture at different locations is also examined. A selection
of results is shown in Fig. 7 for different regions with moder-
ate vegetation and large seasonal variation (densely vegetated
and desert areas show low correlations with monthly varia-
tion of emissivity polarization difference). In general, they
show a good agreement as they display similar monthly vari-
ation with correlation coefficients of more than 0.9. At some
places, such as Lat = 15◦ S and Lon = 30◦ E (Fig. 7a), the po-
larization difference shows better agreement with NDVI vari-
ations. This region is at the edge of the North African Desert
and the effect of soil moisture changes is amplified by the
seasonal variation of vegetation, so there is a stronger rela-
tionship with the emissivity difference. This might indicate
that the soil moisture signal does not persist as the vegetation
signal does as soil moisture tend either to evaporate or infil-
trate more rapidly and does not remain in top surface layers.
Generally, soil moisture tends to precede NDVI and emis-
sivity. However, in other regions farther to the south, such
as Lat = 13◦ S and Lon = 20◦ E, soil moisture is more persis-

tent, which produces better consistency with the variability
of emissivity difference (H-V) (Fig. 7c). Overall, these fea-
tures of the results indicate that the retrieval of low frequency
emissivity is consistent with known properties of the surface,
such as soil moisture and vegetation structure.

4.2 Emissivity variability/ascending and descending
differences

The day-to-day variability of emissivity at different frequen-
cies is represented by the daily mean values (ascending and
descending) to test the stability of the retrieval. It means the
average of emissivity from both ascending and descending
emissivities is calculated for each day. Then, the standard de-
viation of daily averaged emissivities (vertical polarization)
for July 2003 is shown in Table 2 for different land cover
types based on (Matthews, 1983). The RMS variability is
less than 0.021, which demonstrates the consistency of the
instantaneous emissivity product on monthly time scales. We
assume that the geophysical properties of the land surface
(such as vegetation cover) do not change dramatically on this
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Fig. 5. (a–b)Scatter plot of logarithm of emissivity polarization dif-
ference at 10.7 GHz and 6.9 GHz (V-H) versus NDVI.(c–d)Scatter
plot of logarithm of emissivity polarization difference at 10.7 GHz
and 6.9 GHz (V-H) versus ASCAT soil moisture.

Fig. 6. Map of correlation between monthly variation (time series)
of emissivity polarization difference at 10.7 GHz (H-V) and NDVI
monthly mean variation for time period of January 2003 to Decem-
ber 2007.

time scale, although vegetation, soil moisture, snow cover
can change within a month, especially in transition zones
and seasons. Table 2 also shows that as vegetation density
decreases, the day-to-day variability increases. The largest
standard deviations of about 0.02 are seen in the desert areas
and the smallest values around 0.01 occur in rain forest or
densely vegetated regions. In desert regions, the day-to-day
variability mostly decreases, while in densely vegetated areas
the standard deviation increases as the frequency increases.
In desert areas, this could be due to less difference between
the surface skin temperature and the effective emitting tem-
perature. The increase of the variability in vegetated areas
can be due to larger atmospheric effect.

The difference between the retrieved emissivities from the
ascending and descending parts of the orbits (day and night)

Table 2. Day to day variability of global mean emissivity at vertical
polarization for July 2003 at different land vegetation covers.

Day to day variability

Land Class Type 6.9 GHz 10.7 GHz 18.7 GHz 36.5 GHz 89 GHz

Rain forest 0.0092 0.0093 0.0096 0.0103 0.0112
Evergreen forest 0.0107 0.0105 0.0109 0.0113 0.0136
Deciduous forest 0.0110 0.0106 0.0106 0.0111 0.0141
Evergreen woodland 0.0162 0.0148 0.0148 0.0148 0.0179
Deciduous woodland 0.0191 0.0179 0.0175 0.0173 0.0189
Cultivation 0.0148 0.0140 0.0133 0.0132 0.0154
Grassland 0.0190 7 0.0176 0.0167 0.0163 0.0187
Tundra 0.0175 0.0168 0.0158 0.0173 0.0233
Shrub land 0.0198 0.0180 0.0170 0.0164 0.0191
Desert 0.0249 0.0232 0.0212 0.0197 0.0218

is shown in Fig. 8 for 10.7 GHz and 89.0 GHz horizontal po-
larization (as representatives of lower and higher frequen-
cies). The average of the descending passes was subtracted
from the average of ascending passes to generate these maps.
Large differences occur in desert and mountainous locations
even though we expect less difference because of small mois-
ture changes from day to night. These maps are for July
2003, however we also found similar differences in other
months to what is presented here. These differences are more
than 0.1 in some regions such as North Africa, and are much
larger than emissivity variability in available SSM/I product
with standard deviation of about 0.02. This larger system-
atic difference than seen in SSM/I results can be explained
by the timing of the overpass: since the daytime overpass is
closer to the daily maximum temperature but the nighttime
pass is not near to the daily minimum temperature. The dif-
ference of diurnal temperature cycle phase will be larger dur-
ing daytime than nighttime (Grody and Weng, 2008; Prigent
et al., 1999). For some surface types, such as sand dunes,
the microwave signal comes from a deeper layer than the
surface with a different diurnal temperature amplitude and
phase than the surface (Prigent et al., 1999). Using the IR
skin temperature in the emissivity retrieval causes this incon-
sistency. The fact that this inconsistency is even larger for the
lower AMSR-E frequencies corroborates previous findings
that microwave emission at lower frequencies is generated
from deeper soil layers. The lack of global soil temperature
profiles makes removing this inconsistency challenging es-
pecially in arid regions. This effect is more pronounced in
AMSR-E than SSM/I observations because they occur closer
to the extremes of the diurnal temperature cycle. 10.7 and
89.0 GHz both have the same pattern of differences; but the
emissivity difference between day and night at 89.0 GHz is
noticeably smaller than 10.7 GHz at the same locations such
as North and South Africa, due to small penetration depth of
89.0 GHz. A map that shows the effect of penetration depth
in North Africa and Arabian Peninsula was produced by Pri-
gent et al. (1999). The comparison between this map and
the emissivity difference map during day and night (Fig. 8)
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Fig. 7. (a–d)Normalized monthly mean variation of emissivity polarization difference at 10.7 GHz (H-V), NDVI, and soil moisture content
at different locations from January 2003 to December 2007. The vegetation types of these locations are(a) deciduous woodland(b) shrubland
(c) cultivation(d) grassland.

reveals an overall consistency, despite some differences no-
ticed in western part of Sahara Desert. These discrepan-
cies will be carefully examined in subsequent studies, but we
would expect to see some penetration effect over a wider area
because the diurnal temperature contrasts are larger for the
AMSR-E overpass times than for the SSM/I overpass times.
We also found similar differences at horizontal polarization.

4.3 Discussion

Retrieval of land surface emissivity from different sensors
and at different frequencies helps to understand the proper-
ties of land surface. Previous studies have shown that land
surface emissivity can be used to classify the land cover us-
ing the difference between horizontal and vertical polariza-
tion emissivity (Prigent et al., 2001). Using two even lower
frequency emissivities (C- and X-bands) can describe land
cover variations in more details because of their greater sen-
sitivity to the subsurface. Polarization differences, especially
at lower frequencies, can be interpreted as a roughness ef-
fect. As the vegetation increases, the roughness increases
and decreases the difference between emissivities at horizon-
tal and vertical polarization. These patterns may be used to
quantify the polarization difference for land cover classifica-
tion/vegetation detection (Prigent et al., 2001).

However, there are some difficulties in emissivity retrieval
at lower frequencies. Significant differences in the emissiv-
ity maps between the ascending and descending overpasses
were noticed particularly in deserts. The effect of the tem-
perature diurnal cycle amplitude and phase lag between the
microwave and infrared temperatures needs further investi-
gation and should be accounted for in future retrieval pro-
cedures. More similarity in term of penetration depth be-
tween the higher passive microwave frequencies and ther-
mal wavelengths should produce more nearly synchronous
brightness temperature and thermal skin temperature diur-
nal cycles, but at lower frequencies the microwave signal is
sensitive to deeper soil layers (on the order of few centime-
ters at the L-band) (Grody and Weng, 2008). This leads to
a lag between the diurnal variations of the skin temperature
and brightness temperature and inaccurate emissivity values.
This issue is worse for AMSR-E observations because of its
unique overpass time at early morning and maximum tem-
perature of the day. However, the other sensors are providing
more consistent results than AMSR-E in this respect, even
though they show larger emissivity variability. Therefore,
mitigating these discrepancies for AMSR-E emissivity esti-
mates sounds necessary. Revising the skin temperature in or-
der to infer an effective temperature that is representative of
the deeper layer in the soil could resolve this inconsistency.
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Fig. 8. Difference between ascending and descending monthly
mean of AMSR-E emissivity at 10.7 GHz (top), and 89.0 GHz (bot-
tom) in horizontal polarization for July 2003.

5 Conclusions

A procedure using multi-satellite observations for retriev-
ing instantaneous land surface emissivities from AMSR-E
observations under clear sky conditions at all frequencies
and both polarizations is tested. Monthly mean composite
maps are produced at all frequencies and polarizations for
more than six years. The results compared with previous
studies show reasonable consistency. The remaining differ-
ences, after accounting for the differences due to the geome-
try and frequency, can be explained mostly by the difference
in overpass times between two different sensors (AMSR-E
and SSM/I). The methodology is general and extendable to
other sensors, such as WindSat, to achieve better temporal
and spatial coverage. In this study, the focus was on the po-
tential and difficulties of retrieval at the two lower frequency
emissivities that can be obtained from AMSR-E. Differences
between the vertical and horizontal polarizations at C- and
X-band were in good qualitative agreement with known vari-
ations of vegetation density and surface roughness and can
be used as additional indicators of land cover or vegetation
type variation at global scales. Large correlations were found
in moderately vegetated areas with the large seasonal varia-
tions of the lower frequencies polarization differences and

physical properties such as soil moisture and vegetation den-
sity (represented by NDVI). The seasonal variations of the
polarization difference may be used to quantify changes in
vegetation density and potentially crop yield.

The difference between day and night emissivities was
also examined. The lower the frequency is, the larger the
difference would be. This can be explained by the differ-
ence between the skin temperature diurnal variations (ampli-
tude and phase) and the temperature variations at the differ-
ing penetration depths for different frequencies. This effect
is especially larger for AMSR-E because its overpass times
are closer to the daily extremes of the skin temperature. A
method is needed to account for this inconsistency between
infrared thermal temperature and microwave brightness tem-
peratures to remove the differences between emissivities at
ascending and descending overpasses.

The results of this study may be extended to L band (about
1.4 GHz), which has been found to be more suitable for soil
moisture retrieval. Such measurements are available since
2010 from the Soil Moisture and Ocean Salinity (SMOS)
mission (Jorda et al., 2011). In 2014, Soil Moisture Active
and Passive (SMAP) mission will be launched (Entekhabi et
al., 2010) and will also provide us with emissivity estimates
at L-band to complement those obtained from AMSR-E.
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