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[1] Used for regression fitting, neural network (NN) models can be used effectively to
represent highly nonlinear, multivariate functions. In this situation, most emphasis has
been on estimating the output errors, but almost no attention has been given to errors
associated with the internal structure of the NN model. The complex relationships linking
the inputs to the outputs inside the network are the essence of the model and assessing
their physical meaning makes all the difference between a ‘‘black box’’ model with small
output errors and a physically meaningful model that will provide insight on the problem
and will have better generalization properties. Such dependency structures can, for
example, be described by the NN Jacobians: they indicate the sensitivity of one output
with respect to the inputs of the model. Estimating these Jacobians is essential for many
other applications as well. We use a new method of uncertainty estimate developed in
the work of Aires [2004] to investigate the robustness of the quantities that characterize the
NN structure. A regularization strategy based on principal component analysis is proposed
to suppress the multicolinearities that are a major concern when analyzing the internal
structure of such a model. The theory is applied to the remote sensing application already
presented in the work of Aires [2004] and Aires et al. [2004]. INDEX TERMS: 0933

Exploration Geophysics: Remote sensing; 3210 Mathematical Geophysics: Modeling; 3260 Mathematical
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1. Introduction

[2] The Jacobian, or sensitivities, of a NN (neural net-
work) model are defined as the partial first derivatives of the
model outputs with respect to its inputs. These quantities are
very useful. First, they allow one to investigate statistically
how a trained NN model derives the outputs from the
inputs. These Jacobians can identify nonrobust models
and as such have been used for model selection [Rivals
and Personnaz, 2003]. Second, determining such Jacobians
can be important for a given application. For example, when
modeling the Inverse Radiative Transfer Equation (IRTE) in
the atmosphere, the NN Jacobians can be viewed as

estimates of the actual physical Jacobians of the IRTE
[Aires et al., 1999] but this task requires some form of
regularization. Recently, NN Jacobians have also been used
to analyze feedback processes in a dynamical system [Aires
and Rossow, 2003].
[3] A concern with these applications can be raised: the

neural network model is trained to obtain good fit statistics
for its outputs but, most of the time, no constraint is applied
to structure the internal regularities of the model. Statistical
inference is often an ill-posed inverse problem [Tarantola,
1987; Vapnik, 1997; Aires, 1999]: many solutions can be
found for the NN parameters, i.e., the synaptic weights, for
similar output statistics. One of the reasons of this nonunique
solution comes from the fact that multicolinearities can exist
among the variables. Such correlations on input or output
variables are a major problem even for linear regressions: the
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parameters of the regression are very unstable and can vary
drastically from one experiment to another. The Jacobians
are the equivalent of the linear regression parameters so a
similar behavior is expected: when multicolinearities are
present, the Jacobians will probably be highly variable and
unreliable, even if the output statistics of the NN are very
good. The aim of this paper is to investigate this problem,
analyze it, and to suggest a solution.
[4] We will use the application already presented in the

work of [Aires et al., 2001, 2004] and Aires [2004],
concerning the retrieval of surface skin temperature (Ts),
surface microwave emissivities (Em), and integrated water
vapor (WV) over land based on the combination of micro-
wave and infrared satellite observations. In the work of Aires
[2004], we provided a method to estimate the uncertainty of
the neural network weights [MacKay, 1992; Neal, 1996;
Bishop, 1996; Nabney, 2002]. These uncertainties can be
used for a variety of applications, using theoretical deriva-
tions, when they are available [see Aires et al., 2004], or they
can be used in a Bayesian statistics analysis with simulations
by Monte Carlo techniques [Gelman et al., 1995]. The latter
one will be used in this paper to obtain uncertainties of the
NN Jacobians. Estimation of the Jacobian uncertainties is
then used as a diagnostic tool to identify nonrobust regres-
sions, resulting from unstable learning processes.
[5] The solution of the multicolinearity and all robustness

problems in general, is some form of regularization [Vapnik,
1997]. Many regularization techniques exist to reduce the
number of degrees of freedom in the model for the multi-
colinearity problem or for any other ill-posed problem. For
example, one approach consists in reducing the number of
inputs to theNN [Rivals andPersonnaz, 2003], this is amodel
selection tool. However, the introduction of redundant infor-
mation in the input of the NN can be useful for reducing the
observational noise [e.g., Aires et al., 2002b, 2002c] as long
as the NN learning is regularized in some way. Furthermore,
the input variables used in this work are highly correlated
(among brightness temperatures, among first guesses, or
between observations and first guesses) so it would be
difficult to extract few of the original variables and avoid
the multicolinearities by input selection. We propose to solve
this nonrobustness by using a principal component analysis
(PCA) regression approach that would suppress the multi-
colinearities. Such an approach was successfully used in the
work of Aires et al. [2002b]. It is expected that based on this
representation of the inputs and/or outputs,where correlations
are suppressed, the solution to the regression problem would
be unique meaning that the Jacobians would be more reliable
and physically more meaningful.
[6] The Principal Component Analysis (PCA) of the NN

input and output data is described in section 2. The
regularization process by PCA is described in section 3.
Network Jacobians are presented together with their uncer-
tainties in section 4. Conclusions and perspectives are
discussed in section 5.

2. Principal Component Analysis of Inputs and
Outputs

2.1. Principal Component Analysis

[7] Let Cx be the K � K covariance matrix of inputs to a
neural network, and Cy be the M � M covariance matrix of

the outputs. (It is interesting to note here that the input data
is quite particular, both observations and first guess infor-
mation are mixed. A specific analysis of the PCA in
this mixed information would be very interesting but this
is beyond the scope of this paper.) We use the eigen-
decomposition of these two matrices to obtain Fx and Fy

the K � K and M � M matrices whose columns are the
corresponding eigen-vectors.
[8] Instead of the full matrices, we can use the truncated

K0 � K matrix Fx and the M0 � M matrix �Fy (K
0 < K and

M0 < M), to use only the higher-order components [Aires et
al., 2002a]. Inputs x and outputs y are projected using:

x ¼ Fx � S�1
1x � x�m1xð Þ ð1Þ

y ¼ Fy � S�1
1y � y�m1y

� �
; ð2Þ

where S1x and S1y are the diagonal matrices with diagonal
terms equal to the standard deviation of respectively inputs
and outputs, and the vectors m1x and m1y are the input and
output means. The vectors x and y are a compression of the
real data but the inverse transformations of (1) and (2) go
back from the compression to the full representation with, or
course, some compression errors. PCA is optimum in the
least squares sense: the square errors between data and its
PCA representation is minimized.
[9] Using a reduced-PCA representation allows us to

reduce the dimension of the data but a compromise needs
to be found between a good compression level (i.e., smaller
number of PCA components used) and a small compression
error (i.e., larger number of PCA components used). The
more PCA components used for compression, the lower the
compression error is. Another advantage of the PCA repre-
sentation is to suppress part of the noise during the
compression process, when the lower-order principal com-
ponents of a PCA decomposition describe the real variabil-
ity of the observations or the signal and the remaining
principal components describe higher frequency variabil-
ities. The higher orders are more likely to be related to the
Gaussian noise of the instrument or to very minor variabil-
ity. We will consider in the following that the higher-order
components describe noise (instrumental plus unimportant
information) and use the reduced instead of the full PCA
representation. We will not comment on compression or de-
noising considerations in this study [see Aires et al., 2002a].

2.2. PCA Results on Inputs and Outputs

[10] In this section, we analyze the inputs and the outputs
of the NN learning database B in order to define a
representation that will optimize the NN processing.
[11] The NN outputs are the surface skin temperature (Ts),

the integrated water vapor (WV), and the land surface
emissivities (Em). The microwave surface emissivities are
described by 7 output values (i.e., the 7 frequency-pola-
rization channels of the SSM/I instrument) in the neural
network whereas WV and Ts are each described by only
1 value. In order to give the same importance to each of
these 3 physical quantities, we use a additional weights for
each of the neural outputs: 1 for Ts and WV, and 1/7 for each
Em. The interpretation of the components, and in particular
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the individual amplitudes of the anomalies for each PCA
component, is not altered by this normalization.
[12] Table 1 describes the cumulative percentage of

explained variance by a cumulative number of PCA com-
ponents for the input and output data. In Figure 1, the PCA
basis functions for the input data are shown. The first PCA
component, which explains 	42% of the variance, is
dominated by Ts and the microwave brightness temperatures
(TB), with very similar weights for all frequencies. It is the
second component that represents the differences between
the information carried by the horizontal and vertical
polarization channels. The water vapor variance only dom-
inates in the fourth component. Figure 2 presents the PCA
basis functions for the output data. The first component
explains more than half of the signal and is dominated by Ts

and Em, with similar weights for all Em. WV and the Em

polarization differences are represented in the second
component.
[13] Even if the PCA is only optimal for Gaussian-

distributed data sets, it can still be used with more complex
distributions with satisfactory compression levels. Applying
PCA to non-Gaussian data results in non-Gaussian distri-
butions for the PCA components [Aires et al., 2002d]. In
Figure 3, the 6 first output PCA component distributions are
shown. As can be seen, the distributions can be skewed (see
Figures 3a, 3b, 3e, or 3f ) or they can have positive kurtosis,
i.e., platykurtic (see Figure 3d), or negative kurtosis, i.e.,
leptokurtic (see Figure 3c). This makes the use of a
nonlinear model, such as the NN, even more important.
Dealing with non-Gaussian-distributed data requires a

Table 1. Cumulative Percentage Explained Variance of Input, x, and Output, y, With Respect to the Number of

PCA Components

Number of PCA
Components Used

Cumulative Explained Variance
for Inputs, %

Cumulative Explained Variance
for Outputs, %

1 42.50 57.6844
2 68.23 94.1111
3 81.94 98.1895
4 86.38 99.4994
5 90.56 99.9346
6 92.64 99.9675
7 94.47 99.9910
8 96.09 99.9974
9 97.49 100.0000
10 98.35
11 99.01
12 99.46
13 99.78
14 99.87
15 99.94
16 99.98
17 100.00

Figure 1. Eigen-decomposition of the covariance matrix Cx of the inputs, respectively Ts, WV, TB19V,
TB19H, TB22V, TB37V, TB37H, TB85V, TB85H, Em19V, Em19H, Em22V, Em37V, Em37H, Em85V, Em85H,
Tlay.
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model able to use the complex and nonlinear dependencies
in the data or to represent its regime-dependency [Aires
et al., 2000]. Also note that extreme events can occur;
such very strong absolute component value situations are
particularly numerous for PCA components 5 and 6, see
Figures 3e and 3f.
[14] To check the physical consistency of the PCA,

samples of the database B are projected onto the map of
the first two principal components that represent most of
the variability (Figure 4). For display purposes, the clouds
of points are indicated by the one-sigma contour line (i.e.,
the mean is the mean and the standard deviations of the

represented Gaussians are the mean and the standard
deviations of the cloud of points). The projection differ-
entiates the different land surface types in a set of
Gaussians modes that are well separated and that are
physically consistent. Such PCA maps can be used for
clustering or classification schemes. The negative first
component values, such as for the rain forest, means that
for this vegetation type Ts is above the mean value (the
weight of Ts in the first component being negative, see
Figure 2). In contrast, tundra has a positive first compo-
nent, indicating Ts is lower than the mean value. By the
same token, the second component is highly positive for

Figure 2. Eigen-decomposition of the covariance matrix Cy of the outputs.

Figure 3. Histograms of the first 6 PCA components on outputs.
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the rain forest, indicating WV higher than the mean in
equatorial regions, as expected (note that the weight of
WV in the second component is positive). Since surface
types are known to represent a large part of the variabil-
ity, the fact that the PCA is able to coherently separate
them demonstrates the physical significance of the PCA
representation. This is particularly important because the
PCA will be used, in the following, to regularize the NN
learning. The patterns that are found by the PCA will
distribute the contribution of each input and each output
for a given sensitivity. It is essential that these patterns
have a physical meaning.

3. PCA Regression Approach

[15] This sections aims at using the PCA representation
described earlier to perform the regression that is the global
inversion model used for the remote sensing application. As
it will be shown in section 4 this PCA regression regularized
the NN Jacobians found.

3.1. PCA Regression

[16] The practical benefits of using PCA components
instead of the raw inputs and outputs are that the NN
method is faster because of the reduced data dimension
and the reduced noise level in the observations. Further-
more, the learning stage is faster since the network
has fewer inputs and outputs and fewer parameters to
estimate.
[17] The fact that the dimension of the inputs is reduced

decreases the number of parameters in the regression model
(i.e., weights in the neural network), and consequently
decreases the number of degrees of freedom in the model,
which is good for any statistical techniques. The variance in
determining the actual values of the neural weights is also
reduced. The combination of PCA and NN has been used
for example in the work of Aires et al. [2002b] where a
8461-channel spectrum from a high-resolution infrared

interferometer has been compressed into a 100 component
PCA representation to retrieve atmospheric profiles of
temperature, water vapor, and ozone.
[18] The training of the NN is simpler because the inputs

are decorrelated. Correlated inputs in a regression are called
multicolinearities and they are well-known to cause prob-
lems for the model fit [Gelman et al., 1995]. Suppressing
these multicolinearities makes the minimization of the
quality criterion more efficient: it is easier to minimize,
with less probability of becoming trapped in a local mini-
mum. Therefore it has the general effect of suppressing
uncertainty in the determination of the parameters of the NN
model. For a detailed description of PCA-based regression,
see Jolliffe [2002].

3.2. Number of Components Used

[19] How many PCA components should the regression
use? From section 2.1, it is preferable to use the optimal
compromise between the best compression fit and de-
noising in terms of global statistics. This statement is related
to the PCA representation, not taking into account how the
NN uses these components. No theoretical results exist to
define the optimal number of PCA components to be used
in a regression, it entirely depends on the problem to be
solved. Various tests can be performed. Experience with the
NN technique shows that, if the problem is well regularized,
once sufficient information is provided as input, adding
more PCA components to the inputs does not have a
large impact on the retrieved results; the processing just
requires more computations because of the increased data
dimension. Therefore we recommend being conservative
and taking more PCA components than the de-noising
optimum would indicate in order to keep all possibly useful
information.
[20] In terms of output retrieval quality, the number of

PCA components used in the input of the NN needs to be
reduced for other reasons than just denoising or compres-
sion. In fact, during the learning stage, the NN is able to
relate each output to the inputs that help predict it, dis-
regarding the inputs that vary randomly. In some cases, the
dimension of the network input is so big (few thousands)
[Aires et al., 2002a] that a compression is necessary. In our
case, K = 17 is easily manageable so all the inputs variables
could be used. For our study here, K0 = 12 is chosen to
reduce the number of degrees of freedom in the network
architecture. This number of input PCA components is
large enough for the retrieval, representing 99.46% of the
total variance (see Table 1). No additional information
would be gained from adding the higher-order PCA input
components.
[21] The number of PCA components used in the NN

output is related to the retrieval error magnitude for a
nonregularized NN. If the compression error is minimal
compared to the retrieval error of the nonregularized net-
work, then M0, the number of output components used, is
satisfactory. It would be useless to try to retrieve something
that is noise in essence. Furthermore, it could lead to
numerical problems too and interfere with the retrieval of
the other, more important, output components. In this
application, M0 = 5 has been chosen, representing 99.93%
of the total variability of the outputs (see Table 1). It is
particularly interesting to note that the ill-conditioning of

Figure 4. One-sigma contour of the distribution of data
projected on the first 2 PCA components.
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the Hessian matrix H [see Aires, 2004] is intimately related
to the number of inputs and outputs chosen.

3.3. Postprocessing of the Data for the Quality
Criterion

[22] Optimizing NN learning necessitates controlling cor-
rectly the system and diagnosing carefully the learning step,
in contrast to the ‘‘black box’’ perception often associated
with neural networks. In particular, emphasis must be put on
the preprocessing and postprocessing of data.
[23] The normalization is performed before the PCA

representation (section 2.2), but a post-PCA-processing
normalization is also required. The outputs of the network,
i.e., the PCA components, are not homogeneous, they have
different dynamic ranges. The importance of each of the
components in the output of the neural network is not equal.
The first PCA component represents 52.68% of the total
variance of the data, where the fifth component represents
only 0.43% (Table 1). Giving the same weight to each of
these components during the learning process would be
misleading. To resolve this, we give a different weight to
each of the network outputs in the ‘‘data’’ part, ED, of the
quality criterion used for the network learning [see Aires,
2004]. For an output component, this weight is equal to the
standard deviation of the component. This is equivalent to
using Aires [2004, equation (4)], where Ain is the diagonal
matrix with diagonal terms equal to the standard deviation
of the PCA components. Off-diagonal terms are zero since,
by definition, no correlation exists between the components
in Ey = (t(n) � gw(x

(n))) (i.e., the output error, target or
desired output minus the network output).

3.4. Retrieval Results

[24] The PCA-regularized NN has an architecture of
12 inputs, 30 hidden-layer neurons, and 5 outputs (the
nonregularized NN architecture was 17-30-9). The mean
RMS retrieval error for the new NN with PCA representa-
tion of its inputs and outputs is slightly higher than for the

original nonregularized NN. For example, the surface skin
temperature RMS error is 1.53 instead of 1.46 in the
nonregularized NN [see Aires, 2004, Table 1]. This is
expected because we know that reducing variance (over-
fitting) by regularization increases the bias (RMS error).
This is known as the bias/variance dilemma [Geman et al.,
1992]. This dilemma describes the compromise that must be
found between a good fitting on the learning database B and
a robust model with physical meaning. The differences of
RMS errors are, in this case, negligible. The error differ-
ences are also higher for the retrieval of the Em. This is due to
the normalization of Ts, WV, and the seven Em (section 2.2):
each emissivity has less weight in the retrieval statistics
because of the 1/7 factor used.
[25] The evolution of the learning statistics are presented

in Figure 5: these results describe how the RMS error of the
output PCA components retrieval decreases with the num-
ber of learning iterations. The decrease is much more
unstable than a normal learning process, like in the work
of Aires [2004, Figure 2]. Large oscillations occur in the
beginning of the learning process because of the complex
mixing of the components that the NN tries to retrieve: each
component mixes variability from each of the 9 original
output physical variables. The NN can first decrease the
error in one component but then, in order to decrease the
error in another component, it makes compromises that can
result in a sudden increase of the RMS error for some other
components. In Figure 6 we translate these PCA component
RMS error curves back to the original physical variables
space. This confirms that the decrease/stabilization of the
RMS error of the output PCA representation induces a
steady decrease of the RMS error of the physical output
variables. These curves looks much smoother and more
regular than the corresponding ones in the PCA component
space.
[26] In order to estimate the NN weight uncertainties, we

use the approach described in the work of Aires [2004]: the
Hessian matrix H must, first, be computed, and then

Figure 5. RMS error curves for the seven network output PCA components during the learning stage.
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regularized, in order to obtain the covariance matrix of the
weights PDF. This regularization of the Hessian matrix is
done to make it positive definite which is not the same goal
as the regularization of the NN behavior by the PCA
representation. These two regularization steps should not
be confused.
[27] Figure 7 presents the corresponding standard devia-

tion for the neural network weights with various regular-
ization parameters l around the optimal value, l = 660,
which is determined as described in the work of Aires
[2004] using various quality criteria. It is interesting that
the ill-conditioning of the Hessian matrix shows large

sensitivity to some particular network weights. For l too
small, the standard deviation is very chaotic and nonmono-
tonic with some values going from extreme large values to
even negative ones. Increasing l makes the standard devi-
ation of the particular weights converging to a more
acceptable, positive value, and coherent with the other
standard deviations. At the same time, increasing l uni-
formly decreases the standard deviation in all the network
weights. The balance between a l large enough to regular-
ize H but without changing the standard deviation of well-
behaved weights must be found [Aires, 2004]. This is
probably the most important issue for the uncertainty

Figure 6. RMS error curves for the nine network outputs during the learning stage.

Figure 7. Standard deviation of NN weights with increased regularization parameter l.
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estimates described in this study. Another approach to
obtain a well-conditioned Hessian would be, during the
learning stage, to constrain the Hessian matrix H to stay
definite positive.

4. Uncertainty of Neural Network Jacobians

[28] The a posteriori distribution of weights is useful to
estimate the uncertainties of network outputs [Aires et al.,
2004]. We will now show that these distributions can be
used for the estimation of very complex probabilistic
quantities via Monte Carlo simulations. As an example of
such an approach, we use it to estimate the uncertainties of
the neural network.

4.1. Definition of Neural Network Sensitivities

[29] The neural network technique not only provides a
statistical model relating the input and output quantities, it
also enables an analytical and fast calculation of the neural
Jacobians (just the derivative of the analytical expression of
the NN model), also called the neural sensitivities or adjoint
model [Aires et al., 1999]. For example, the neural Jaco-
bians for the two-layered MLP (a MLP network with one
hidden layer) are

@yk
@xi

¼
X
j2S1

wjk �
ds
da

X
i2S0

wijxi

 !
� wij: ð3Þ

For a more complex MLP network with more hidden layers,
a back-propagation algorithm exists that computes effi-
ciently the neural Jacobians [Bishop, 1996]. Since the NN is
nonlinear, these Jacobians depend on the situation defined
by the particular input, x.
[30] The neural Jacobian concept is a very powerful tool

since it allows for a statistical estimation of the multivariate
and nonlinear sensitivities connecting the input and output
variables in the model under study, which can be very useful
as a data analysis tool [Aires and Rossow, 2003]. The
Jacobian matrix gives the global mean sensitivities for each
retrieved parameter: they indicate the relative contribution
of each input in the retrieval for a given output parameter.
The Jacobian is situation-dependent which means that,
depending on the situation x, the NN uses the available
information in different ways.

4.2. Preprocessing and Postprocessing of Data

[31] Before they are introduced as inputs and outputs of
the neural network, the reduced-PCA representations, x and
y, need to be centered and normalized. This is a requirement
for the neural network method to work efficiently. The new
inputs and outputs of the neural network are given by:

x0 ¼ S�1
2x � x�m2xð Þ ð4Þ

y0 ¼ S�1
2y � y�m2y

� �
; ð5Þ

where the S2x and S2y are the diagonal matrices of the
standard deviations of respectively x and y (defined in
equations (1) and (2)) and vectors m2x and m2y are the
respective means.

[32] The NN formulation allows derivation of the net-

work Jacobian @y0

@x0

h i
for the normalized quantities of equa-

tions (4) and (5). To obtain the Jacobian in physical units,
one should use equations (1), (2), (4), and (5) to find:

@y

@x

� 	
¼ S1y � Fy

T � S2y �
@y0

@x0

� 	
� S�1

2x � Fx � S�1
1x : ð6Þ

[33] Equation (6) gives the neural Jacobian for the physical
variables x and y. To enable comparison of the sensitivities
between variables with different variation characteristics,
the terms S1y and S1x

�1 can be suppressed in this expression
so that, for each input and output variable, a normalization
by its standard deviation is used. The resulting nonlinear
Jacobians indicate the relative contribution of each input in
the retrieval to a given output variable.

4.3. Marginalization and Sampling Strategy

[34] Marginalization is defined, in Bayesian statistics, as
the simulations performed to integrate a conditional prob-
ability. This approach was not used frequently in the past
but is now more and more attractive since the large number
of computations required are much more manageable with
modern computers.
[35] To go beyond the ‘‘point estimation’’ approach

where a learning algorithm is used to estimate only the
optimal set of weights, the distribution of weights w uncer-
tainty must be investigated. This distribution of weights can
be used to estimate complex probabilitistic quantities like
the confidence intervals of stochastic variables, the distri-
bution of the outputs [Aires et al., 2004], and other
probabilities of quantities dependent on the output of the
network. All these potential applications require the inte-
gration under the PDF of weights. Fortunately, the a
posteriori distribution of weights is supposed to be Gaussian
[Aires, 2004]: This means that the normalization term 1

ZN is
easily obtained (this is a main difficulty when integrating a
PDF). The integration and the manipulation of a Gaussian
PDF is particularly easy compared to other distributions.
However, when faced with the estimation of complex
quantities, the analytical solution of such integrations can
still be difficult to obtain. The estimation of the network
Jacobians PDF is such a situation. This is why simulation
strategies have to be used. Simulations first sample the PDF
of weights {wr; r = 1 . . ., R} and then use this sample to
approximate the integration under the whole weight PDF.
[36] Using only w?, the Maximum A Posteriori (MAP)

parameters, to estimate some other dependent quantities
directly may not be optimal, even if we are not interested in
uncertainty estimates. In fact most of the mass of the
distribution (i.e., location of the domain where the
probability is higher), in a high dimension space, can be
far from the most probable state (i.e., the MAP state): The
high dimension makes the mass of the PDF more on the
periphery of the density domain and less at its center.
Nonlinearities can also distort the distribution of the
estimated quantity. This is why it is good to use R samples
of the weights {wr; r = 1 . . ., R} to estimate the density of
the quantity of interest. See Appendix A for various
sampling techniques in high dimension spaces.
[37] Concerning the network Jacobians, the MAP net-

work Jacobian is given by using the most probable network
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weights w?. The mean Jacobian is not sufficient for a real
sensitivity analysis, a measure of the uncertainty in this
estimate is required as well. In fact, the neural network is
designed to reproduce the right outputs, but without any a
priori information, the internal regularities of the network
have no constraint. As a consequence, the internal
regularities, such as the NN Jacobians, are expected to
have a large variability. This variability needs to be
monitored.
[38] To estimate the uncertainties of the Jacobians, we use

R = 1000 samples from the weights PDF described in the
work of Aires [2004]. Using an adequate sampling algorithm
is a key issue here. To sample this Gaussian distribution in
very high dimension space (about 800 network weights), the
metropolis algorithm is used (see Appendix A). This method
is also suitable for non-Gaussian PDFs.
[39] For each weight sample wr, we estimate the mean

Jacobian over the entire data set B. This means that we have
at our disposal a sample of R = 1000 mean Jacobians. They
are then averaged and a PDF for each individual term in the
Jacobian matrix is obtained.

4.4. Multicolinearity Problem

[40] Table 2 gives the mean neural Jacobian values for
the variables xk and yi for the neural network, as defined
in equation (3). As described in section 4.2, the neural
Jacobians are normalized by the standard deviation of the
respective variables to enable comparison of the sensitiv-
ities between variables with different variation character-
istics. These values indicate the relative contribution of
each input in the retrieval of a given output parameter.
The numbers correspond to global mean over B values
which may mask rather different behaviors in various
regions of the input space. The standard deviations of the
uncertainty PDF are also indicated. The variability of the
Jacobians is large: uncertainty of the neural sensitivities
can be up to several times the mean value. For most
cases, the Jacobian value is not in the confidence interval,
which means that the actual value is not significant. In
linear regression, obtaining nonsignificant parameters is
often the signal that multicolinearities are a problem for
the regression.

[41] A sample of sensitivities from the predictive
distribution is presented (Figure 8) along with the distri-
bution of these sensitivities, confirming the large uncer-
tainties of the sensitivities. The distribution of the
Jacobians shows that most of them are not statistically
significant. The reason for such uncertainty can be the
pollution of the learning process by multicolinearities in
the data (inputs and outputs), which introduce compensa-
tion phenomena. For example, if two inputs are correlated
and they are used by the statistical regression to predict
an output component, then the learning has some inde-
terminacy: it can give more or less emphasis to the first
of the inputs as long as it compensates this under- or
over-allocation by, respectively, an over- or under-alloca-
tion in the second, correlated, input variable. This means
that the two corresponding sensitivities will be highly
variable from one learning cycle to another one. The
output prediction would be just as good for both cases,
but the internal structure of the model would be different.
Since it is these internal structures (i.e., Jacobians) that
are of interest here, this problem needs to be resolved.
[42] To see if the multicolinearities and consequent com-

pensation phenomena are at the origin of the sensitivity
uncertainties, the correlation between sensitivities is mea-
sured. If some of these sensitivities are correlated or anti-
correlated it means that, from one learning cycle to another,
the sensitivities will always be related following the com-
pensation principle. The correlation of a set of sensitivities
is shown in Table 3; some of the correlations are significant.
For example, as expected, the correlation between the
sensitivities of Ts to TB19V and TB22V is larger in absolute
value than Ts with higher frequency TB. The negative sign
of this correlation is explained by the fact that TB19V being
highly correlated with TB22V, a large sensitivity of Ts to
TB19V will be compensated for in the NN by a low
sensitivity to TB22V, leading to a negative correlation.
The absolute value of the correlations is not extremely high
(about 0.3 or 0.4) but when added, all these correlations
define a quite complex and strong dependency structure
among the sensitivities. This is a sign that multicolinearities
and subsequent compensations are acting in the network
model.

Table 2. Global Mean Nonregularized Neural Sensitivities
@y
@x

a

Ts WV Em19V Em19H Em22V Em37V Em37H Em85V Em85H

TB19V 0.26 ± 0.19 0.04 ± 0.23 0.91 ± 0.18
? �0.20 ± 0.23 0.57 ± 0.22

?
0.02 ± 0.19 �0.29 ± 0.15 �0.17 ± 0.21 �0.12 ± 0.19

TB19H 0.08 ± 0.19 0.42 ± 0.27 �0.16 ± 0.24 1.26 ± 0.40
? �0.46 ± 0.36 �0.54 ± 0.23

?
0.03 ± 0.18 �0.30 ± 0.23 �0.43 ± 0.27

TB22V 0.11 ± 0.19 �0.79 ± 0.27
?

0.17 ± 0.21 �0.14 ± 0.25 0.59 ± 0.28
? �0.15 ± 0.21 �0.09 ± 0.17 �0.77 ± 0.21

? �0.26 ± 0.22
TB37V 0.20 ± 0.18 �0.16 ± 0.21 0.19 ± 0.18 �0.25 ± 0.21 0.25 ± 0.21 1.12 ± 0.19

?
0.05 ± 0.15 0.63 ± 0.20

?
0.01 ± 0.19

TB37H 0.15 ± 0.18 �0.67 ± 0.23
? �0.28 ± 0.17 �0.00 ± 0.22 �0.13 ± 0.21 0.18 ± 0.19 0.84 ± 0.15

? �0.20 ± 0.20 0.61 ± 0.21
?

TB85V 0.24 ± 0.16 �0.05 ± 0.20 �0.54 ± 0.17
? �0.14 ± 0.19 �0.61 ± 0.23

? �0.29 ± 0.18 �0.33 ± 0.14
?

1.06 ± 0.18
? �0.15 ± 0.20

TB85H �0.13 ± 0.15 1.60 ± 0.18
?

0.05 ± 0.15 �0.16 ± 0.17 0.09 ± 0.18 �0.12 ± 0.16 0.02 ± 0.13 �0.14 ± 0.16 0.45 ± 0.17
?

Ts 0.18 ± 0.08
? �0.15 ± 0.11 �0.27 ± 0.08

? �0.14 ± 0.09 �0.26 ± 0.10
? �0.31 ± 0.08

? �0.12 ± 0.07 �0.26 ± 0.09
? �0.07 ± 0.09

WV �0.04 ± 0.05 0.33 ± 0.07
?

0.03 ± 0.06 0.04 ± 0.08 �0.01 ± 0.09 0.03 ± 0.06 �0.04 ± 0.05 �0.06 ± 0.07 �0.15 ± 0.08
Em19V �0.07 ± 0.04 0.07 ± 0.06 0.12 ± 0.05

?
0.11 ± 0.08 0.09 ± 0.07 0.15 ± 0.05

?
0.06 ± 0.04 0.16 ± 0.05

?
0.03 ± 0.05

Em19H �0.11 ± 0.08 �0.03 ± 0.10 0.22 ± 0.09
? �0.04 ± 0.15 0.29 ± 0.14

?
0.19 ± 0.09

?
0.09 ± 0.07 0.16 ± 0.10 0.18 ± 0.10

Em22V �0.06 ± 0.04 0.04 ± 0.05 0.11 ± 0.04
?

0.04 ± 0.04 0.15 ± 0.04
?

0.13 ± 0.04
?

0.05 ± 0.03 0.13 ± 0.04
?

0.06 ± 0.04
Em37V �0.07 ± 0.04 0.02 ± 0.05 0.11 ± 0.04

?
0.07 ± 0.05 0.13 ± 0.05

?
0.16 ± 0.04

?
0.07 ± 0.03

?
0.15 ± 0.04

?
0.07 ± 0.04

Em37H �0.08 ± 0.06 �0.07 ± 0.07 0.14 ± 0.06
?

0.09 ± 0.07 0.15 ± 0.07
?

0.18 ± 0.06
?

0.11 ± 0.05
?

0.20 ± 0.06
?

0.15 ± 0.06
?

Em85V �0.04 ± 0.04 �0.05 ± 0.06 0.07 ± 0.04 0.07 ± 0.05 0.11 ± 0.05
?

0.10 ± 0.05 0.04 ± 0.04 0.20 ± 0.05
?

0.10 ± 0.05
?

Em85H �0.03 ± 0.07 �0.18 ± 0.09 0.12 ± 0.09 �0.04 ± 0.11 0.17 ± 0.10 0.12 ± 0.08 0.05 ± 0.06 0.21 ± 0.08
?

0.21 ± 0.07
?

Tlay �0.03 ± 0.06 0.13 ± 0.09 �0.04 ± 0.08 0.01 ± 0.09 �0.07 ± 0.09 �0.06 ± 0.08 �0.03 ± 0.06 �0.13 ± 0.08 �0.04 ± 0.07
aColumns are network outputs, y, and rows are network Inputs, x. Sensitivities with absolute value higher than 0.3 are in bold and positive

5%-significance tests are indicated by a star. The first part of this table is for SSM/I observations, the second part corresponds to first guesses.

D10305 AIRES ET AL.: NEURAL NETWORK UNCERTAINTIES, 3

9 of 14

D10305



[43] To avoid such multicolinearity problems, the net-
work learning needs to be regularized: (1) by using some
physical a priori information to better constrain the learning,
in particular in term of dependency structure among the
variables; (2) or by employing some statistical a priori
information that will help reduce the number of degrees
of freedom in the learning process in a physically mean-
ingful way. In the following sections, we investigate the

latter regularization strategy by using principal component
analysis.

4.5. PCA-Regularized Jacobians

[44] In Table 4, the PCA-regularized NN (see section 3.4)

is used to estimate the mean Jacobian matrix @y0

@x0

h i
of raw

network outputs and inputs, together with the corresponding
standard deviations. The standard deviations are much more

Figure 8. (top) Twenty samples of 5 neural network sensitivities @Ts
@Ts ;

@Ts
@TB37V ;

@Ts
@TB85V ;

�
@Ts

@Em37V
; and @Ts

@Em85V
Þ, and (bottom) histogram of the same network sensitivities.

Figure 9. (top) Twenty samples of 5 regularized neural network sensitivities @Ts
@Ts ;

@Ts
@TB37V ;

@Ts
@TB85V ;

�
@Ts

@Em37V
; and @Ts

@Em85V
Þ, and (bottom) histogram of the same network sensitivities.
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satisfactory in this case: some high sensitivities are
present but they are all significant to the 5% confidence
interval. The structure of this sensitivity matrix is inter-
esting and really illustrates the way the NN connects
inputs and outputs together. For example, the first output
component is related to the first input component (0.81
sensitivity value) but also the third input component
(0.51). This shows that the PCA components are not
the same in output and in input so that the NN needs to
nonlinearly transform the input component to retrieve the
output ones. With increasing output component number, the
input component number used increases too. However,
higher-order input components (more than 5) have
limited impact. Even if the mean sensitivity is low, it
does not mean that the input component has no impact
on the retrieval for some situations. The nonlinearity of
the NN allows it to have a situation-dependency of the
sensitivities so that a particular input component can be
valuable for some particular situations.
[45] Using equation (6), we obtain the corresponding

Jacobian matrix @y
@x

h i
for the physical variables instead of

the PCA components, but normalized as discussed in
section 4.2 to be able to compare individual sensitivities
(Table 5). The uncertainty of the sensitivities is now very
low and most of the mean sensitivities are significant to
the 5% level. This demonstrates that the PCA regulari-
zation has solved, at least partially, the problem of
Jacobian uncertainty, by suppressing the multicolinearities

in the statistical regression. Interferences among variables
are suppressed and the standard deviations calculated for
each neural sensitivity are very small, as compared to
the values previously estimated without regularization
(Table 2). In addition, the sensitivities make more sense
physically, as expected.
[46] The retrieved Ts is very sensitive to the brightness

temperatures at vertical polarizations for the lower fre-
quencies (see number in bold in the corresponding
column). The emissivities being close to one for the
vertical polarization (and higher than for the horizontal
polarization), Ts is almost proportional to TB in window
channels (i.e., those that are not affected by water vapor).
Sensitivity to the Ts first guess is also rather high, but
associated with a higher standard deviation. Sensitivities
to the first guess emissivities are weak, regardless of
frequency and polarization. WV information clearly comes
from the 85 GHz horizontal polarization channel. It is
worth emphasizing on the fact that the sensitivity of WV
to TB85H is almost twice as large as to the WV first
guess, meaning that real pertinent information is extracted
from this channel. Sensitivity of the retrieved emissivities
to the inputs strongly depends on the polarization, the
vertical polarization emissivities being more directly re-
lated to Ts and TBV given their higher values generally
close to one. Emissivities in vertical polarization are
essentially sensitive to Ts and to the TBV, whereas the
emissivities in the horizontal polarization are dominated

Table 3. Correlation Matrix for a Sample of Neural Network Sensitivitiesa

@Ts
@Ts

@Ts
@TB19V

@Ts
@TB19H

@Ts
@TB22V

@Ts
@TB37H

@Ts
@TB85V

@Ts
@TB85H

@Ts
@Em19V

@Ts
@Em19H

@Ts
@Em85H

@Ts
@Ts 1.00 � � � � � � � � � � � � � � � � � � � � � � � � � � �
@Ts

@TB19V �0.19 1.00 � � � � � � � � � � � � � � � � � � � � � � � �
@Ts

@TB19H �0.15 �0.18 1.00 � � � � � � � � � � � � � � � � � � � � �
@Ts

@TB22V �0.05 �0.44 �0.16 1.00 � � � � � � � � � � � � � � � � � �
@Ts

@TB37H 0.13 �0.00 �0.59 �0.01 1.00 � � � � � � � � � � � � � � �
@Ts

@TB85V �0.08 �0.04 0.12 �0.18 �0.03 1.00 � � � � � � � � � � � �
@Ts

@TB85H �0.01 0.18 �0.05 �0.08 �0.38 �0.45 1.00 � � � � � � � � �
@Ts

@Em19V
0.14 �0.17 0.25 �0.16 �0.06 0.15 0.04 1.00 � � � � � �

@Ts
@Em19H

�0.00 0.14 �0.44 0.09 0.03 �0.03 0.01 �0.41 1.00 � � �
@Ts

@Em85H
�0.01 0.18 �0.41 0.17 0.06 0.03 �0.12 �0.31 0.26 1.00

aCorrelations with absolute value higher than 0.3 are in bold.

Table 4. Global Mean Neural Sensitivities
@y0

@x0 of Raw Network Output and Inputa

NN Inputs

NN Outputs

Compo 1b Compo 2 Compo 3 Compo 4 Compo 5

Compo 1 �0.81 ± 0.01 �0.25 ± 0.01 0.53 ± 0.01 �0.05 ± 0.01 �0.03 ± 0.01
Compo 2 �0.21 ± 0.01 �0.69 ± 0.01 �0.62 ± 0.01 0.16 ± 0.01 0.10 ± 0.02
Compo 3 0.51 ± 0.01 �0.65 ± 0.01 0.41 ± 0.01 0.47 ± 0.01 0.02 ± 0.01
Compo 4 0.17 ± 0.01 �0.46 ± 0.01 0.05 ± 0.01 �0.44 ± 0.01 �0.07 ± 0.01
Compo 5 �0.06 ± 0.01 0.04 ± 0.01 �0.00 ± 0.01 �0.02 ± 0.01 0.77 ± 0.04
Compo 6 �0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.07 ± 0.01
Compo 7 �0.01 ± 0.01 0.02 ± 0.01 �0.01 ± 0.01 �0.02 ± 0.01 0.10 ± 0.01
Compo 8 �0.03 ± 0.01 �0.10 ± 0.01 0.01 ± 0.01 �0.04 ± 0.01 �0.05 ± 0.01
Compo 9 0.01 ± 0.01 0.02 ± 0.01 �0.01 ± 0.01 �0.00 ± 0.01 �0.25 ± 0.01
Compo 10 �0.01 ± 0.01 0.03 ± 0.01 0.00 ± 0.01 0.02 ± 0.01 0.12 ± 0.01
Compo 11 �0.14 ± 0.01 0.22 ± 0.01 �0.01 ± 0.01 0.05 ± 0.01 0.25 ± 0.01
Compo 12 0.10 ± 0.01 �0.18 ± 0.01 0.10 ± 0.01 0.08 ± 0.01 �0.14 ± 0.01

aColumns are network outputs, y0, and rows are network inputs, x0. Sensitivities with absolute value higher than 0.3 are in bold.
bCompo refers to PCA component.
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by the emissivity first guess. The sensitivity matrix
clearly illustrates how the NN extracts the information
from the inputs to derive the outputs. In Figure 9, a
sample of sensitivities from the predictive distribution is
presented along with the distribution of these sensitivities.
The comparison with similar plots in Figure 8 confirms
the robustness of the Jacobians from the regularized NN.
[47] Experiments (not shown) establish that such PCA-

regularized NNs have robust Jacobians even when the
NN architecture is changed, for example with a different
number of neurons in hidden layer. This shows how robust
and reliable the new NN Jacobians and the NN model
have become with the help of the PCA representation
regularization.
[48] The sensitivity matrix is not only an efficient tool to

help understand the NN inversion procedure, it can also
help refine the inversion method, for instance by identifying
inputs that would not significantly contribute to the retrieval
(inputs for which all sensitivities are very low) [Rivals and
Personnaz, 2003].

5. Conclusion and Perspectives

[49] The Jacobians of a nonlinear model, such as the NN,
are a very powerful concept. In terms of the NN model, it
allows us to obtain a robust model that will generalize well
and suffer less from over-fitting deficiencies. Jacobians can
also be used to analyze how the NN model links the inputs
and the outputs, in a nonlinear way. This capacity is
especially important when the NN as an analysis tool as
proposed by Aires and Rossow [2003].
[50] In this paper, we show how to estimate the Jacobians

of a nonlinear regression model, in particular for a NN
model. New tools are provided to check how robust and
stable these Jacobians are by estimating their uncertainty
PDF by Monte Carlo simulations. A tool is provided to
identify situations where regularization needs to be used. As
it is often the case, regularization is a fundamental step of
NN learning, especially for inverse problems [Badeva and
Morosov, 1991; Tikhonov and Arsenin, 1977]. We propose a
regularization method based on the PCA regression (using a
PCA representation of input and output data for the NN) to

suppress the problem of multicoilnearities in data. Our
approach is able to make the learning process more stable,
the Jacobians more reliable and can be more easily inter-
preted physically. All these tools are very general and can
be used for other nonlinear models of statistical inference.
[51] Our work provides a framework for the characteriza-

tion, the analysis, and the interpretation of Jacobians and
their uncertainties in any neural network-based retrieval
scheme. A large range of applications can benefit from such
Jacobian estimates in meteorology and climatology. New
technical developments can be pursued to solve additional
problems. For example, we proposed in the work of Aires et
al. [2004] to use the NN Jacobians to analyze in even more
detail the different sources of uncertainty in the NN outputs
(e.g., instrument noise, direct model errors). This could use
the approach of Rodgers [1990] presented for classical
remote sensing techniques such as variational assimilation.
[52] Another domain of application is the next generation

of satellite sounders like IASI or AIRS. It would be
particularly interesting to estimate the Jacobians of the
radiative transfer equation (direct and inverse models) to
characterize vertical resolution results for atmospheric tem-
perature, water vapor, and ozone.
[53] Analysis of dynamical systems is another type of

application. In [Aires and Rossow, 2003] the NN Jacobians
are estimated to analyze feedback processes. The reliable
estimation of physical Jacobians through the NN model is
an ideal candidate for the study of climate feedback in both
numerical models and observation data sets. The new ideas
and techniques presented in this paper will directly benefit
such studies.

Appendix A: Sampling a PDF in the High-
Dimensional Space of Network Weights

[54] The simplest way of sampling a PDF is to define a
multidimensional regularly spaced grid on the weight space.
The probability of weights w is then estimated at each grid
points. Clearly, this strategy becomes very inefficient when
the number of network weights becomes too large. In the
following application, we see that the number of weights
involved is 819 and can be as large as tens of thousands. A

Table 5. Global Mean Regularized Neural Sensitivities
@y
@x (Columns are Network Outputs, y, and Rows are Network Inputs, x)

Ts WV Em19V Em19H Em22V Em37V Em37H Em85V Em85H

TB19V 0.23 ± 0.02 �0.52 ± 0.02 0.06 ± 0.00 �0.00 ± 0.00 0.06 ± 0.00 0.04 ± 0.00 �0.01 ± 0.00 �0.02 ± 0.00 �0.03 ± 0.00
TB19H 0.06 ± 0.01 0.14 ± 0.01 0.00 ± 0.00 0.03 ± 0.00 �0.00 ± 0.00 �0.01 ± 0.00 0.03 ± 0.00 �0.01 ± 0.00 0.02 ± 0.00
TB22V 0.21 ± 0.01 �0.34 ± 0.01 0.05 ± 0.00 �0.01 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 �0.01 ± 0.00 �0.01 ± 0.00 �0.02 ± 0.00
TB37V 0.21 ± 0.01 �0.27 ± 0.01 0.04 ± 0.00 �0.01 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 �0.01 ± 0.00 0.00 ± 0.00 �0.02 ± 0.00
TB37H 0.06 ± 0.01 0.28 ± 0.01 �0.02 ± 0.00 0.02 ± 0.00 �0.01 ± 0.00 �0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00
TB85V 0.12 ± 0.01 0.39 ± 0.01 �0.02 ± 0.00 �0.01 ± 0.00 �0.02 ± 0.00 �0.00 ± 0.00 �0.01 ± 0.00 0.04 ± 0.00 0.01 ± 0.00
TB85H 0.01 ± 0.02 0.80 ± 0.02 �0.06 ± 0.00 0.01 ± 0.00 �0.05 ± 0.00 �0.03 ± 0.00 0.01 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

Ts 0.20 ± 0.02 �0.18 ± 0.02 �0.04 ± 0.00 �0.01 ± 0.00 �0.05 ± 0.00 �0.05 ± 0.00 �0.01 ± 0.00 �0.04 ± 0.00 �0.01 ± 0.00
WV �0.06 ± 0.01 0.42 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 �0.00 ± 0.00 �0.01 ± 0.00 �0.02 ± 0.00 �0.01 ± 0.00

Em19V �0.09 ± 0.01 0.09 ± 0.01 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
Em19H �0.07 ± 0.02 �0.08 ± 0.02 0.03 ± 0.00 0.05 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.04 ± 0.00 �0.04 ± 0.00 0.01 ± 0.00
Em22V �0.07 ± 0.01 0.05 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00
Em37V �0.08 ± 0.01 0.02 ± 0.01 0.02 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.01 ± 0.00
Em37H �0.08 ± 0.02 �0.13 ± 0.02 0.02 ± 0.00 0.03 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 0.02 ± 0.00
Em85V �0.05 ± 0.01 �0.06 ± 0.01 0.01 ± 0.00 �0.00 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.00 ± 0.00 0.05 ± 0.00 0.02 ± 0.00
Em85H �0.05 ± 0.02 �0.16 ± 0.02 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 0.03 ± 0.00

Tlay �0.03 ± 0.02 0.11 ± 0.02 �0.00 ± 0.00 �0.01 ± 0.00 �0.00 ± 0.00 �0.01 ± 0.00 �0.01 ± 0.00 �0.01 ± 0.00 �0.01 ± 0.00

Sensitivities with absolute value higher than 0.3 are in bold. The first part of this table is for SSM/I observations, the second part corresponds to first
guesses.
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regular sampling in M intervals for each coordinate would
require M 819 samples!
[55] An alternative is to use the Cholesky decomposition

of the covariance matrix [Press et al., 1992] H�1 = L � LT.
(Here H�1 needs to be positive definite; see Aires [2004] for
regularization techniques that make this matrix positive
definite.) This can be used to sample the PDF: a random
weight sample wr is defined by

wr ¼ L � r; ðA1Þ

where r is a vector of normalized Gaussian random
numbers. This approach is simple and elegant, but it can
still be quite laborious since for each sample wr, a total of W
(i.e., the dimension of w) Gaussian random numbers needs
to be calculated which is very time-consuming.
[56] Eigen-value decomposition can avoid this time-

consuming problem. It uses the decomposition of the
covariance matrix H�1 into its eigen-vectors:

H�1 � f i ¼ si � f i: ðA2Þ

The vectors fi, columns of W � W matrix F, are the eigen-
vectors and the scalars si are the eigen-values of matrix H�1.
Then, each Gaussian sample is defined as:

wr ¼ F � Sr; ðA3Þ

where Sr is a diagonal matrix whose elements are drawn
from a Gaussian distribution of mean zero and variance one.
To reduce the time, one can use only the first few, more
important, eigen-vectors and draw only a few random
numbers in Sr. This truncation makes this technique much
faster. The compromise is that we lose some of the
variability implied by higher-order eigen-vectors.
[57] Stochastic methods [Duflo, 1996] are particularly

interesting for sampling high-dimension PDFs. Markov
Chain Monte Carlo (MCMC) algorithms are good candi-
dates [Gelman et al., 1995]. These techniques are based on
the idea that it is not useful to sample the space of
parameters w where the distribution P(w) is very small.
Markov Chain Monte Carlo methods (like a random walk)
are designed to sample mostly the significant part of the
parameter space w. The metropolis algorithm is one of these
methods:
[58] 1. Modify wold to wnew = wold + Dw using a jump

model P(Dw).
[59] 2. If P(wnewjD) > P(woldjD) accept.
[60] 3. If P(wnewjD) < P(woldjD) accept with probability

P wnewð jDÞ
P woldð jDÞ.

[61] 4. Go to (1) until the number of samples w is
sufficient, or a stopping criterion is satisfied.
[62] A very important feature of MCMC algorithms is

that they do not require the evaluation of the normalization
term of the PDF (which can be extremely complex to
estimate for non-Gaussian distributions). This gives MCMC
methods the huge advantage of being able to deal with non-
Gaussian distributions where eigen and Cholesky decom-
positions are designed for Gaussian distributions only.
[63] As sophisticated as the optimization algorithm used

during the learning stage is, the process can still be trapped

in local minima w?. It is well-known that many local minima
exist in the quality criterion for the optimization of a neural
network. For example, the permutation of all the neurons in
the hidden layer would not change the results in the network
outputs (i.e., same value for the criterion) but would change
radically the weight vector. This proves that there exists a
large number of local minima with equivalent criterion
values. This does not affect the quality of the network but
increases artificially the variability of weights. This is the
reason why it can be necessary to integrate over different
local minima. One approach to do that is using multiple
learnings of the neural network, starting from different
initial conditions for the network weights. For example,
bootstrap methods take a different part of the learning
database for each of the learnings. The various learning
results estimate different final network weights w?. This
approach is perfectly valid, but it has a drawback in the
neural network context: the learning step is computationally
an intensive process. It is thus extremely difficult, or even
unrealistic, to try to estimate the a posteriori distribution of
the network weights based on such a scheme. However, it
should be noted that it is possible to use a combination of
the bootstrap and the metropolis methods. This will be the
subject of a further study.

Notation

y vector of physical variables to retrieve, outputs
of the NN.

M dimension of vector of y, outputs of the NN.
t target vector of physical variables in data set B.

yb first guess a priori information for x.
x observations vector, inputs of the NN.
K dimension of vector of x, inputs of the NN.
Ev generic error symbol for variable v.
Pv generic probability measure of variable v.
Cx covariance matrix of NN inputs x.
Cy covariance matrix of NN outputs y.
H = rjw (rjw (ED(w))), the Hessian matrix of the

log likelihood.
S1x the diagonal matrices which diagonal terms are

the standard deviation of input variable x.
S1y the diagonal matrices which diagonal terms are

the standard deviation of output variable y .
m1x mean vector of input variable x .
m1y mean vector of output variable y .
x0 PCA representation of observations x .
y0 PCA representation of physical variables y .

S2x the diagonal matrix whose diagonal terms are the
standard deviation of input PCA representation x .

S2y the diagonal matrix whose diagonal terms are the
standard deviation of output PCA representation
y .

m2x mean vector of PCA representation PCA x .
m2y mean vector of PCA representation PCA y .

r vector of normalized Gaussian random numbers.
Sr diagonal matrix whose elements are drawn from

a Gaussian distribution of mean zero and
variance one.

Fv eigen-vector matrix associated to covariance
matrix of vector v, with columns equal to fi.

� truncation operator.
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�T transposition operator.
ai activity of neuron i.
s sigmoid function of the neural network.
Si number of neurons in network layer i.
gw neural network model, or transfer function for

our application.
w {wi; i = 1, . . ., W}, the vector of the network

weights.
W dimension of w.
R number of samples in {wr; r = 1, . . ., R}, the

sample of network weights.
B learning database, that includes outputs D.
D target or network output database.

ED(w) data term of the quality criterion.
Er(w) regularization term in the quality criterion.

l regularization factor for the inversion of H.
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