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Global Surface Radiation Budget Estimated from Satellite
The Truth Seems Between Bill’s and My Estimates
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@ Chang & Li (2005, . Climate) MODIS C5 Product Simulated ISCCP Product
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Fig. 6 a) Probabilities of cloud occurrence and b) joined-probabilities of Pc and 7145 derived from three
different satellite inversion algorithms applied to the MODIS pixel data.
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Outline

m Aerosol radiative forcing at the top of the
atmosphere:

m Acrosol radiative forcing at the surface:

B Aecrosol-PBI .-Convection Interactions
N

diurnal & weekly cycles & long-term
trends



Aerosol-Induced Changes in Cloud
Radiative Frocing: Most Uncertain
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Systematic difference in aerosol indirect
radiative forcing from modeling
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Impact of acrosol invigoration effect
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Variations of DC Properties with Aerosol Loading
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Quantative estimation of Aerosol Induced Canges in
Cloud Radiative Forcing (CRF)
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Impact of Aerosol on DC Anvil

We used 10 years of ARM/Satellite data to estimate the long-

term mean aerosol-induced change in CRF to be
Yan et al. (2014, ACP)




Outline

m Acrosol radiative forcing at the top of the
atmosphere:

m Acrosol-Cloud-Interaction (ACI)
m Acrosol radiative forcing at the surface:

m Acrosol-Radiation-Interaction (ARI)

B Aecrosol-PBI .-Convection Interactions
N



ACI & ARI Effects
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Aerosol Direct Radiative Forcing in China

Monthly Aerosol and Cloud Radiative Forcing
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Aerosol-PBI.-Convection Interactions

Wang et al.
(2013, AE)
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Impact of Aerosol on Temperature Inversion

AERI data of SGP (20081030) Temperature (K)

Temperature Profile in SGP
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Aerosol Optical Depth & Single Scattering
Albedo in China

BC Dominant

Xin et al. (2007, JGR) Lee et al. (2007, JGR)
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Invention of a
“passive aerosol profiler”
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Impact on the of Lightening
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Impact of the
Thunderstorms in Central China
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Impact of the
Thunderstorms in SE China
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Three new methods of satellite retrieval of

Updraft Speed at Cloud Base

Hopeful to disentangling the effects of

aerosol from dynamics




Method 1;: Cu Clouds

Method 2: Marine Sc

Method 3: St. Clouds
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Aerosol and Monsoon Climate Interactions in Asia
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Li et al. (2016, Review of Geophysigs) Li et al. (2016, National Sci. Review)

0.0 0.2



For more, please refer to the two review articles
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Aerosol and monsoon climate interactions over Asia
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Abstract The increasing severity of droughts/floods and worsening air quality from increasing aerosols in
Asia monsoon regions are the two gravest threats facing over 60% of the world population living in

Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the
roles of aerosols in impacting Asian monsoon weather and dimate. This paper provides a comprehensive
review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary
source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The
distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in
turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken
the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative
effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to
reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations.
The atmospheric thermodynamic state, which determines the formation of clouds, convection, and
precipitation, may also be altered by aerosols serving as cloud condensation nudlei or ice nuclei. Absorbing
aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical
feedback processes, leading toa strengthening of the early monsoon and affecting the subsequent evolution
of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude,
frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical,
observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized.
A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such
as desert dust, black carbon from biomass buming, and biogenic aerosols from vegetation are considered
integral components of an intrinsic aerosol-monsoon climate system, subject to extemal forcing of global
warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon
interactions calls for an integrated approach and international collaborations based on long-term sustained
observations, process measurements, and improved models, as well as using observations to constrain
model simulations and projections.

Li et al. (2016, Review of Geophysics)
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Aerosol and Boundary-Layer Interactions and
Impact on Air Quality

Zhanqing Lit2*, Jianping Guo3*, Aijun Ding*, Hong Liao5, Jianjun Liu?, Yele
Sun®7, Tijian Wang3, Huiwen Xue®, Hongsheng Zhang8, Bin Zhu®

Air quality is concerned with pollutants in both gas phase and solid or liquid
phase. The latter are referred to as aerosols, which are multifaceted agents
affecting air quality, weather, and climate through many mechanisms. Unlike gas
pollutants, aerosols interact strongly with meteorological variables with the
strongest interactions taking place in the planetary boundary layer (PBL). The
PBL hosting the bulk of aerosols in the lower atmosphere is affected by aerosol
radiative effects. Both aerosol scattering and absorption reduce the amount of
solar radiation reaching the ground and thus reduce the sensible and latent heat
fluxes that drive the diurnal evolution of the PBL. Moreover, aerosols can
increase atmospheric stability by inducing a temperature inversion as a result of
both scattering and absorbing of solar radiation, which suppresses dispersion of
pollutants and leads to further increases in aerosol concentration.

Li et al. (2017, National Sci. Review)




= Impact of ARI on cloud radiative forcing

m Aerosol modify both macro- and micro-cloud
properties

m Impact on the in DC anvil may help close the gap.
= Aerosol and cloud radiation interactions (ACI)
m Strong regional effects

m To certain extent, drastic changes in aerosol loading in
China help explain changes in most meteorological
variables

= Aerosol-Radiation-Cloud-Interactions (ARCI)

m Most challenging but essential to fully understand the
broad impact of aerosol on climate.

m Relate to both the mean and variability of climate



Part 1
Objectives

Generation of new remote sensing products and quantify their uncertainties for
operational application

Demonstration of their potentials to improve the weather forecast if the
information can be ingested into the system.

Atmospheric. temperature With a relative humidity of
= . - | 100% at clond base height, the
Cl T, can be used to compute the
water vapor mixing ratio at
cloud base. To retrieve the
we assume a well-mixed BL
with fixed water vapor mixing
ratio(Zhu et al. 2014)
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clond base temperature is defined as warmest
clondy pixcel (Zhu et al. 2014)

H, = (T, - T,)/9.8




Wind Speed Changes

Plain: weakening, Mountain top: strengthening
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